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What is... an elliptic curve?

Concretely, when the base field F has char(F ) ̸= 2, an elliptic
curve E/F is a curve defined by

E : y2 = x3 + Ax + B

where A,B ∈ F , with −16(4A3 + 27B2) ̸= 0.

An elliptic curve E/F has the unique property that the set
E (F ) of its F -rational points is an abelian group.



As a planar curve, this group law ⊕ is described by a chord
and tangent method.

Figure: The chord and tangent method on an elliptic curve E/R in
Weierstrass form. From Silverman’s “The Arithmetic of Elliptic Curves.”



Torsion points

Under the group law, the points in E (F ) of finite order are
called torsion points.

If P ∈ E has finite order dividing n, say that P is an n-torsion
point:

nP := P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

= O,

where O is the identity element of E . Such a point is called
an n-torsion point.

For each n ∈ Z+, we let E [n] denote the n-torsion subgroup
of E (F ) of points with order dividing n.



Division fields

x and y -coordinates of torsion points are roots of polynomials,
and so they generate finite degree field extensions of F .

For each integer n ∈ Z+, we let F (E [n])) denote the
n-division field of E , obtained by adjoining all coordinates of
n-torsion points on E to F . There are finitely many n-torsion
points, so this is a finite extension of F .



An example: consider the elliptic curve

E : y2 = x3 − 2x .

It has E [2] = {O, (0, 0), (±
√
2, 0)}.

Thus its 2-division field is Q(E [2]) = Q(
√
2).

With extra work, one can check that

E [3] =

{
O, (α,±

√
α3 − 2α)

∣∣∣∣∣ α = ±

√
2± 4√

3

}
.

More work shows that Q(E [3])/Q is Galois, of degree 16.
This field also contains the primitive cube root of unity

ζ3 :=
−1+

√
−3

2 .



Galois representations of elliptic curves

F (E [n])/F naturally arises as the fixed field under a Galois
action.

GF := Gal(F/F ) on E [n] coordinate-wise:

σ · (x , y) := (σ(x), σ(y)).

This group action homomorphism is called the mod-n Galois
representation of E/F :

ρE ,n : GF → Aut(E [n]).

This action describes “how rational” each n-torsion point is,
and where these coordinates live.



E [n] is a free rank two Z/nZ-module, so fixing a basis, the
representation becomes

ρE ,n : GF → GL2(Z/nZ),

i.e., the image can be realized as a subgroup of 2× 2
invertible matrices over Z/nZ.
We have ker ρE ,n = Gal(F/F (E [n])). Modding out by the
kernel gives a faithful representation

ρE ,n : Gal(F (E [n])/F ) ↪→ GL2(Z/nZ).



The image of the mod-n Galois representation of an elliptic
curve tells you about its n-torsion points.

For example, an elliptic curve E/F has up to conjugacy

ρE ,n(GF ) ⊆
{[

1 ∗
0 ∗

]}
iff E has an F -rational order n torsion point.

Similarly, one has up to conjugacy

ρE ,n(GF ) ⊆
{[

∗ ∗
0 ∗

]}
iff E has a cyclic subgroup of order n fixed by the action of
GF . (Keyword: “rational cyclic isogeny of degree n.”)



Cyclotomy in division fields

Torsion points of elliptic curves E/F are closely connected to

roots of unity ζ ∈ F which are elements in F
×
of finite

multiplicative order:
ζn = 1

for some n ∈ Z+. We will write ζn for a primitive n’th root of
unity (exact order n).

By properties of the n-Weil pairing, one always has

ζn ∈ F (E [n]).



It’s easy (with computers) to come up with explicit examples
of n-division fields which strictly contain F (ζn). Calculations
might suggest this containment is almost always strict.

Guiding question for this talk: when are these two fields
equal, i.e.,

F (ζn) = F (E [n]).

We call such n-division fields above cyclotomic, or small.



We have a complete answer for elliptic curves over Q.

Theorem (González-Jiménez and Lozano-Robledo, 2016).

Let E/Q be an elliptic curve. If one has Q(E [n]) = Q(ζn), then
n ≤ 5.

They prove this with a close analysis of mod-n Galois
representations over Q, with careful group-theoretic
calculations and explicit calculations with modular curves over
Q, which are a sort of moduli space for elliptic curves with
specific torsion group structure.

They are able to use the wealth of progress towards
understanding rational points on modular curves, and Galois
representations over Q.



What about a similar result over general number fields?
Considerably less is known about Galois representations and
modular curves over number fields larger than Q.

However, we are able to prove the following uniformity result
for prime levels.

Theorem (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p ∈ Z+

a prime. If F (E [p]) = F (ζp), then p is uniformly bounded in F .

With our work, we can bound p super-exponentially in terms
of [F : Q] (conjecturally polynomially).



Ideas behind the proof:



The main idea for our proof uses the fact that
F (E [n]) = F (ζn) is equivalent to

ρE ,n(GF ) ∩ SL2(Z/nZ) = 1,

where SL2(Z/nZ) are the matrices in GL2(Z/nZ) with
determinant 1.

We prove this for prime levels p since we can utilize a known
classification of subgroups of GL2(Z/pZ). (“algebra”)
We also apply work of Serre on computing mod-p images of
inertia. (“arithmetic”)

The algebra and arithmetic lets us put constraints “above and
below” the image ρE ,p(GF ), which lets us uniformly bound p.
(We will describe one case of this in a moment.)



Upper bounds

We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on
ρE ,p(GF ).

Theorem.

Let G ⊆ GL2(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy):

a. G contains SL2(Z/pZ).
b. G is upper triangular.

c. G is contained in the normalizer of a split or nonsplit Cartan subgroup.

d. The quotient G/G ∩ (Z/pZ)×I is isomorphic to A4, S4 or A5.



Upper bounds

We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on
ρE ,p(GF ).

Theorem.

Let G ⊆ GL2(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy). Assuming that G ∩ SL2(Z/pZ) = 1:

a. G contains SL2(Z/pZ).

b. G is upper triangular and is generated by

[
1 1
0 1

]
and

G ∩ (Z/pZ)×I .
c. G is contained in the normalizer of a split or nonsplit Cartan

subgroup and is generated by any non-Cartan element in G, along
with the subgroup G ∩ (Z/pZ)×I .

d. The quotient G/G ∩ (Z/pZ)×I is isomorphic to A4, S4 or A5.



Lower bounds

On the other hand, Serre has provided a description for the
action of the inertia subgroup of GK on an elliptic curve’s
p-torsion subgroup E [p], when K is a local field.

We can use this to give an explicit image of inertia in our
mod-p representation. This result is essentially due to Serre;
we will give an abridged version here.



Theorem.

(Abridged) Let E/F be an elliptic curve, p ∈ Z+ a prime and P a prime
in F over p. Let e0 := e(P | p) denote the ramification index of P over
p, and set G := ρE ,p(GF ). Assume that both p ∤ #G and E has
semistable reduction at P. Then the following is true up to conjugacy:

a. If E has good ordinary or bad multiplicative reduction at P, then{[
∗ 0
0 1

]e0}
⊆ G .

b. If E has good supersingular reduction at P, then G contains the
e0’th power of the non-split Cartan subgroup (which has size
(p2 − 1)/ gcd(p2 − 1, e)).

This gives us our “lower bounds” on ρE ,p(GF ).

Combining these two results lets us create bounds on p in
terms of e0, and thus in terms of [F : Q], thereby giving us
uniform bounds.



The Cycle program



The Cycle program

This project was started through Ohio State’s Cycle program,
which was created in 2021.

Cycle is an accredited program in the math department, which
is largely run by graduate students.

Undergraduates can enroll to receive 1 credit hour for each
semester they participate (though this is not required to
participate).

Undergraduate participants are paired up with project mentors
(which include faculty and graduate students), and are
expected to work on a reading/research project with their
mentors for two semesters. This culminates in presenting a
posterboard at a project fair at the end of the Spring semester.

https://math.osu.edu/cycle


Beyond helping students experience and transition into active
research, the other two principal goals of Cycle are:

1 Fostering a community of students within the department.

2 Offering professional development opportunities to students.

We do this through organizing weekly meetings with all of our
students, often offering pizza and inviting faculty speakers to
talk about the mathematics profession.



The Cycle program is steadily growing:

In Spring 2022, Cycle had 15 projects, with 18 mentors and 16
mentees.

In Fall 2024 - Spring 2025, it had 26 projects, with 27 mentors
and 41 mentees.

This Fall 2025 - Spring 2026 year currently has 32 projects, 33
mentors and 66 mentees!



Thank you for listening!

Figure: From the 2025 Cycle Fair. Sam, David and me.


