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The goal of this talk is to introduce you to the study of
elliptic curves and their torsion points via (almost purely)
group-theoretic considerations.

Hopefully I can convince you that you can do elliptic curves
research with some experience in abstract algebra!

Here is an outline:
1 Describe elliptic curves and torsion points.
2 Define division fields and Galois representations of elliptic

curves.
3 Illustrate how group theory is used in understanding torsion

points, via explicit matrix calculations.
4 Share some research vistas.



What is an elliptic curve?

Elliptic curves are special algebraic curves where points can
be added together to produce more points on the curve.

An elliptic curve E defined over a field F , written E/F , is a
nonsingular curve defined by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ F .

When the characteristic of F is not 2, elliptic curves E/F also
have an equation of the form

E : y2 = x3 + Ax + B

where A,B ∈ F .

These equations are called Weierstrass forms.



Figure: Three elliptic curves pictured above each other in R2, also seen
below.

(a) (b) (c)

Figure: The curves E1 : y
2 + xy + y = x3 − x2 − 5x + 5,

E2 : y
2 + y = x3 − x and E2 : y

2 − y = x3 − x2.



E1 : y2 + xy + y = x3 − x2 − 5x + 5 E2 : y2 + y = x3 − x E3 : y2 − y = x3 − x2



Elliptic curves E/F always have a point that lies beyond the affine
plane F 2, called the point at infinity. This point O can only be seen
in projective space.

Figure: An elliptic curve pictured in real projective space RP2, with point
at infinity O. “Parallel lines in R2 converge in RP2.”

A great video on visualizing the projective space is Putting
Algebraic Curves in Perspective, by Shillito.

https://www.youtube.com/watch?v=XXzhqStLG-4
https://www.youtube.com/watch?v=XXzhqStLG-4


The group law

For an elliptic curve E/F , let E (F ) denote its set of
F -rational points on E .

Then E (F ) is a group under a chord and tangent method.

Figure: Example of the chord and tangent method on an elliptic curve
E/R. From [1].



This group law was described geometrically, but its algebraic
constructions also hold over fields beyond R:

Figure: The elliptic curve y2 = x3 + x over the finite field of size 103.

Figure: An elliptic curve as a complex torus C/Λ. Right picture from [2].



Torsion points

To make things easier, let us assume our fields F are number
fields (finite degree extensions of Q).

The group law on an elliptic curve E/F extends from E (F ) to
E (C).
Points P ∈ E (C) with finite order are called torsion points:
there exists n ∈ Z+ with

nP := P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

= O.

Such a point is also called an n-torsion point.

The subgroup of n-torsion points on E is called the n-torsion
subgroup of E , and is denoted by E [n]. General theory shows
that #E [n] = n2.



Figure: The elliptic curve E : y2 = x3 + 93x + 94, with its order 6 torsion
point P = (23,−120) and its multiples.



Division fields and Galois
representations



For an elliptic curve E/F , an n-torsion point P ∈ E (C)
satisfies

nP = O.

Similar to algebraic numbers, this implies that the x and
y -coordinates of P are roots of polynomials over F . (keyword:
division polynomials.)

A portion of arithmetic geometry research is dedicated to
understanding the rationality of torsion points, i.e.,
understanding over which fields torsion points live.

One way to understand rationality of torsion points is through
studying division fields and Galois representations of
elliptic curves.



Division fields

Given E/F , for each integer n > 0 we let F (E [n]) denote the
n-division field of E/F , obtained by adjoining all x and
y -coordinates of n-torsion points from E onto F .

Since coordinates of torsion points are algebraic numbers, the
n-division field is always a finite extension of F .



An example: consider the elliptic curve

E : y2 = x3 − 2x .

It has 2-torsion subgroup E [2] = {O, (0, 0), (±
√
2, 0)}.

Thus its 2-division field is Q(E [2]) = Q(
√
2).

With extra work, one can check that

E [3] =

{
O, (α,±

√
α3 − 2α)

∣∣∣∣∣ α = ±

√
−2± 4√

3

}
.

Q(E [3])/Q is Galois, with degree 16.

Since i , 31/4 ∈ Q(E [3]), this field also contains the primitive

cube root of unity ζ3 := e
2πi
3 = −1+

√
−3

2 , where ζ33 = 1.



Q(E [3])

Q(α, i)

Q(α) Q(β) Q(
√
3, i) Q((1 + i) · α) Q((1 + i) · β)

Q(
√
3) Q(i) Q(ζ3)

Q

In the above, we let α :=
√

−2 + 4√
3
and β :=

√
−2− 4√

3
.

Then Q(α, i) is the splitting field of ψE ,3(x) := 3x4 + 12x2 − 4, whose
roots are ±α and ±β, the x-coordinates of the order 3 points on E .

Gal(Q(α, i)/Q) ∼= D4, the dihedral group of order 8 (symmetry group of
the square).

Q(E [3])/Q(α, i) is a quadratic extension. Can you find a generator?



The Galois action on torsion

For an elliptic curve E/F , one important interpretation of its
n-division field F (E [n])/F is as the fixed field under the
Galois action on E [n].

Let F denote an algebraic closure of F . This is e.g. the
subfield of C of all elements which are algebraic over F , i.e.,
are roots of polynomials over F .

Consider the absolute Galois group of F :

GF := Gal(F/F ).

GF consists of F -automorphisms σ : F
∼−→ F ; these describe

where to send every single algebraic number over F .



For any elliptic curve E/F and integer n > 0, the absolute
Galois group GF acts on E [n] coordinate-wise:

σ · (x , y) := (σ(x), σ(y)).

This group action homomorphism is called the mod-n Galois
representation of E/F :

ρE ,n : GF → Aut(E [n]).



It is the case that E [n] is a free rank two Z/nZ-module.
Fixing a basis for E [n], our representation can be written as

ρE ,n : GF → GL2(Z/nZ),

where GL2(Z/nZ) is the group of 2× 2 invertible matrices
over Z/nZ.
We have ker ρE ,n = Gal(F/F (E [n])), so that F (E [n])/F is
Galois. Modding out by the kernel gives a faithful
representation

ρE ,n : Gal(F (E [n])/F ) ↪→ GL2(Z/nZ).



Explicitly, if {P,Q} is a basis for E [n], then the image
ρE ,n(GF ) can be described explicitly: for σ ∈ GF , one has

ρE ,n(σ) =

[P Q

P a b
Q c d

]
if and only if

σ(P) = aP + cQ,

σ(Q) = bP + dQ.

Sometimes we write ρE ,n,P,Q instead of ρE ,n to specify the
basis.



Common shapes

We can describe rationality of n-torsion points via the
“shape” of the Galois representation.

For an elliptic curve E/F , a point P ∈ E [n] of order n is
F -rational if and only if for Q ∈ E [n] with {P,Q} a basis, one
has

ρE ,n,P,Q(GF ) ⊆ B1(n) :=

{[
1 ∗
0 ∗

]}
:

ρE ,n,P,Q(σ) =

[P Q

P 1 ∗
Q 0 ∗

]
⇐⇒ σ(P) = P.

Thus E has an F -rational point of order n iff ρE ,n(GF ) is
contained in B1(n) up to conjugacy.



Say the subgroup ⟨P⟩⊆ E [n] is F-rational if ⟨P⟩ is fixed by
the action of GF on E [n], i.e., for all σ ∈ GF one has

σ(P) ∈ ⟨P⟩.

One has that a cyclic order n subgroup ⟨P⟩ is F -rational iff
one has

ρE ,n,P,Q(GF ) ⊆
{[

∗ ∗
0 ∗

]}
for some Q ∈ E [n] where {P,Q} is a basis.

(This is related to understanding rational cyclic isogenies of
elliptic curves.)

One has ρE ,n(GF ) = 1 iff F (E [n]) = F .



Research in elliptic curves:
cyclotomic division fields



Cyclotomy in division fields

Torsion points of elliptic curves E/F are closely connected to

roots of unity ζ ∈ F , which are elements in F
×
of finite

multiplicative order:
ζn = 1

for some n ∈ Z+. We will write ζn for a primitive n’th root of
unity (exact order n).

By properties of the n-Weil pairing, one always has

ζn ∈ F (E [n]).



A natural question is when are these two fields equal, i.e.,

F (ζn) = F (E [n]).

We call these division fields cyclotomic, or small.

Our previous example of an for the 3-division field of

E : y2 = x3 − 2x

had ζ3 ∈ Q(E [3]), as well as [Q(E [3]) : Q] = 16. Since
Q(ζ3) = Q(

√
−3), we conclude that

Q(ζ3) ⊊ Q(E [3]).



One can use computers to try and look for explicit examples
of cyclotomic division fields. Calculations would suggest this is
uncommon, and only happens for small n.

(a) (b)

Figure: An example of preliminary Magma code searching for cyclotomic
division fields, along with its output. Our code uses functions from [3],
and follows its subgroup labeling scheme.



A complete answer is known for elliptic curves over Q.

Theorem (González-Jiménez and Lozano-Robledo, 2016 (4)).

Let E/Q be an elliptic curve. If one has Q(E [n]) = Q(ζn), then
n ≤ 5. More generally, if Q(E [n])/Q is abelian then n ≤ 8.

They prove this with a close analysis of mod-n Galois
representations over Q, with careful group-theoretic
considerations and explicit calculations with modular curves
over Q, which are a sort of moduli space for elliptic curves
with specific torsion group structure.

They are able to use the wealth of progress towards
understanding rational points on modular curves, and Galois
representations over Q.



Considerably less is known about Galois representations and
modular curves over number fields larger than Q.

However, we are able to prove the following uniformity result
for prime levels.

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p ∈ Z+

a prime.

a. If F (E [p]) = F (ζp), then p is uniformly bounded in F .

b. If F (E [p])/F is abelian, then p is uniformly bounded in F .*

*Under these two technical hypotheses: that the Generalized Riemann
Hypothesis (GRH) is true, and that F does not contain the Hilbert class field of
an imaginary quadratic number field.



Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p ∈ Z+

a prime.

a. If F (E [p]) = F (ζp), then p is uniformly bounded in F .

b. If F (E [p])/F is abelian, then p is uniformly bounded in F .*

If F (E [p]) = F (ζp), then p is bounded super-exponentially in
terms of [F : Q].

If F (E [p])/F (ζp) is abelian, then p is similarly bounded in
terms of [F : Q]!.

Our explicit bounds depend on bounds for orders of torsion
points over number fields in terms of the degree of the field
(which are conjectured to be polynomial in [F : Q].)



Ideas behind the proof:



We will focus on the how we can prove uniform bounds on
primes p which appear for small p-division fields over F :

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p ∈ Z+

a prime. If F (E [p]) = F (ζp), then p is uniformly bounded in F .



Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p ∈ Z+

a prime. If F (E [p]) = F (ζp), then p is uniformly bounded in F .

Unlike the result over Q, the impetus of our proof is the fact
that F (E [n]) = F (ζn) if and only if

ρE ,n(GF ) ∩ SL2(Z/nZ) = 1,

where SL2(Z/nZ) are the matrices in GL2(Z/nZ) with
determinant 1.

This puts constraints on what the image ρE ,n(GF ) can be.



Why is our result for prime levels p? Two reasons:
1. There exists a classification of subgroups of GL2(Z/pZ).

(“algebra”)
2. There exists work on Serre for understanding the mod-p

images of inertia. (“arithmetic”)

Together, the algebra and arithmetic lets us put constraints
“above and below” the image ρE ,p(GF ), which lets us
uniformly bound p.



Algebra

We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on
ρE ,p(GF ).

Theorem.

Let G ⊆ GL2(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy):

a. G contains SL2(Z/pZ).
b. G is upper triangular.

c. G is contained in the normalizer of a split or nonsplit Cartan subgroup.

d. The quotient G/G ∩ (Z/pZ)×I is isomorphic to A4, S4 or A5.



Algebra

We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on
ρE ,p(GF ).

Theorem.

Let G ⊆ GL2(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy). Assuming that G ∩ SL2(Z/pZ) = 1:

a. G contains SL2(Z/pZ).
b. G is upper triangular and in fact diagonalizable.

c. G is contained in the normalizer of a split or nonsplit Cartan
subgroup and is generated by any non-Cartan element in G, along
with the subgroup G ∩ (Z/pZ)×I .

d. The quotient G/G ∩ (Z/pZ)×I is isomorphic to A4, S4 or A5.



Arithmetic

On the other hand, Serre has provided a description for the
action of the inertia subgroup of GK on an elliptic curve’s
p-torsion subgroup E [p], when K is a local field.

We can use this to prove the following almost purely
group-theoretic result (essentially due to Serre).



Theorem.

(Abridged) Let E/F be an elliptic curve, p ∈ Z+ a prime and P a prime
in F over p. Let e := e(P | p) denote the ramification index of P over p,
and set G := ρE ,p(GF ). Assume that p ∤ #G, and that E has semistable
reduction at P. The following is true up to conjugacy:

a. If E has good ordinary or bad multiplicative reduction at P, then{[
∗ 0
0 1

]e}
⊆ G .

b. If E has good supersingular reduction at P, then G contains the
e’th power of the non-split Cartan subgroup. In particular, its size
(p2 − 1)/ gcd(p2 − 1, e) divides #G.

This gives us our “lower bounds” on ρE ,p(GF ).

Combining these two results lets us prove bounds on p in
terms of e ≤ [F : Q], giving us uniform bounds.



The work involved in this theorem can be summarized as
follows:

1 Assume ρE ,p(GF ) ∩ SL2(Z/pZ) = 1.
2 Describe the “shape” of ρE ,p(GF ) via the classification of

subgroups of GL2(Z/pZ).
3 Black-box work of Serre to analyze which groups must appear

in ρE ,p(GF ).
4 Use the three items above to drastically reduce which options

can appear for ρE ,p(GF ); determine what these options say
about rationality of p-torsion on E/F .

5 Cite results on uniformly bounding order of prime torsion
points of elliptic curves over number fields.

The majority of this project is elementary group theory
calculations, and working with Galois theory conceptually.

Our paper can be found at this arXiv identifier: 2511.23381

https://arxiv.org/abs/2511.23381


Figure: From the 2025 Cycle Fair. Sam A., David K. and me.



Future projects:



Are there uniform bounds on levels of division fields over
number fields with a property besides ‘cyclotomic’ or
’abelian’?

For example, nilpotent division fields have uniform bounds
connected to Mersenne primes. This has been studied over Q
by Daniels and Rouse: 2409.00881

Finally, our preliminary searches for small division fields
suggested that uniform bounds of p ≤ 7 worked over all
number fields that we checked from the LMFDB. Can we
push the algebra/arithmetic further to prove a sharper uniform
bound?

https://arxiv.org/abs/2409.00881
https://www.lmfdb.org/


Thank you!
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