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@ The goal of this talk is to introduce you to the study of
elliptic curves and their torsion points via (almost purely)
group-theoretic considerations.

@ Hopefully | can convince you that you can do elliptic curves
research with some experience in abstract algebra!
@ Here is an outline:
@ Describe elliptic curves and torsion points.
@ Define division fields and Galois representations of elliptic
curves.
© lllustrate how group theory is used in understanding torsion
points, via explicit matrix calculations.
@ Share some research vistas.



What is an elliptic curve?

@ Elliptic curves are special algebraic curves where points can
be added together to produce more points on the curve.

e An elliptic curve E defined over a field F, written E/F, is a
nonsingular curve defined by the equation

y? 4 a1xy + asy = x> + apx® + agx + ag,

where a1, as, a3, 34,36 € F.

@ When the characteristic of F is not 2, elliptic curves E/F also
have an equation of the form

E:y’=x3+Ax+B

where A, B € F.
@ These equations are called Weierstrass forms.



A\

Figure: Three elliptic curves pictured above each other in R?, also seen
below.
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@ Elliptic curves E/F always have a point that lies beyond the affine
plane F?, called the point at infinity. This point O can only be seen
in projective space.

Figure: An elliptic curve pictured in real projective space RPP?, with point
at infinity O. “Parallel lines in R? converge in RIP2."

@ A great video on visualizing the projective space is Putting
Algebraic Curves in Perspective, by Shillito.


https://www.youtube.com/watch?v=XXzhqStLG-4
https://www.youtube.com/watch?v=XXzhqStLG-4

The group law

e For an elliptic curve E/F, let E(F) denote its set of
F-rational points on E.

@ Then E(F) is a group under a chord and tangent method.
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Figure: Example of the chord and tangent method on an elliptic curve
E/R. From [1].



@ This group law was described geometrically, but its algebraic
constructions also hold over fields beyond R:

Figure: The elliptic curve y? = x3 4 x over the finite field of size 103.
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Figure: An elliptic curve as a complex torus C/A. Right picture from [2].



To make things easier, let us assume our fields F are number
fields (finite degree extensions of Q).

The group law on an elliptic curve E/F extends from E(F) to
E(C).

Points P € E(C) with finite order are called torsion points:
there exists n € Z* with

nP=PpPd---®P=0.

n times

Such a point is also called an n-torsion point.

The subgroup of n-torsion points on E is called the n-torsion
subgroup of E, and is denoted by E[n]. General theory shows
that #E[n] = n?.
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Figure: The elliptic curve E : y?> = x3 4 93x + 94, with its order 6 torsion
point P = (23, —-120) and its multiples.



Division fields and Galois
representations



@ For an elliptic curve E/F, an n-torsion point P € E(C)
satisfies
nP = 0.

Similar to algebraic numbers, this implies that the x and
y-coordinates of P are roots of polynomials over F. (keyword:
division polynomials.)

@ A portion of arithmetic geometry research is dedicated to
understanding the rationality of torsion points, i.e.,
understanding over which fields torsion points live.

@ One way to understand rationality of torsion points is through
studying division fields and Galois representations of
elliptic curves.



Division fields

e Given E/F, for each integer n > 0 we let F(E[n]) denote the
n-division field of E/F, obtained by adjoining all x and
y-coordinates of n-torsion points from E onto F.

@ Since coordinates of torsion points are algebraic numbers, the
n-division field is always a finite extension of F.



@ An example: consider the elliptic curve
E:y?=x3-2x

@ It has 2-torsion subgroup E[2] = {0, (0,0), (£v/2,0)}.
o Thus its 2-division field is Q(E[2]) = Q(V/2).

@ With extra work, one can check that

4
a==+ —2i}.

E[3]—{O,(a,i ad — 2a) 7

Q(E[3])/Q is Galois, with degree 16.
e Since i,3'/% € Q(EJ3]), this field also contains the primitive

2mi

cube root of unity (3 1= e3 = Y= where (3 = 1.



Q(E[3])
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@ In the above, we let o := 1/—2—|—% and 8= ,/—2— %.

@ Then Q(a, i) is the splitting field of e 3(x) := 3x* + 12x? — 4, whose
roots are -« and +f, the x-coordinates of the order 3 points on E.

@ Gal(Q(a, i)/Q) =2 D4, the dihedral group of order 8 (symmetry group of
the square).

@ Q(E[3])/Q(e, i) is a quadratic extension. Can you find a generator?



The Galois action on torsion

@ For an elliptic curve E/F, one important interpretation of its
n-division field F(E[n])/F is as the fixed field under the
Galois action on E[n].

o Let F denote an algebraic closure of F. This is e.g. the
subfield of C of all elements which are algebraic over F, i.e.,
are roots of polynomials over F.

o Consider the absolute Galois group of F:
Gr := Gal(F/F).

e Gr consists of F-automorphisms o: F = F; these describe
where to send every single algebraic number over F.



@ For any elliptic curve E/F and integer n > 0, the absolute
Galois group Gf acts on E[n] coordinate-wise:

- (xy) = (o(x),o(y))-

@ This group action homomorphism is called the mod-n Galois
representation of £/F:

PE.n: G — Aut(E[n]).



@ It is the case that E[n] is a free rank two Z/nZ-module.
Fixing a basis for E[n], our representation can be written as

pEn: GF — GL2(Z/nZ),

where GL2(Z/nZ) is the group of 2 x 2 invertible matrices
over Z/nZ.

o We have ker pg , = Gal(F/F(E[n])), so that F(E[n])/F is
Galois. Modding out by the kernel gives a faithful
representation

pen: Gal(F(E[n])/F) — GL(Z/nZ).



e Explicitly, if {P, Q} is a basis for E[n], then the image
pE.n(GF) can be described explicitly: for o € G, one has

if and only if

o(P) = aP + cQ,
7(Q) = bP + dQ.

@ Sometimes we write pg , p.@ instead of pg , to specify the
basis.



Common shapes

@ We can describe rationality of n-torsion points via the
“shape” of the Galois representation.

@ For an elliptic curve E/F, a point P € E[n] of order n is
F-rational if and only if for Q € E[n] with {P, Q} a basis, one
has

PEnP.Q(GF) C Bi(n) := {[(1) :]} :

PEnPQ(0) = [(1) :] s o(P) = P.

@ Thus E has an F-rational point of order n iff pg ,(GF) is
contained in Bi(n) up to conjugacy.



e Say the subgroup (P)C E[n] is F-rational if (P) is fixed by
the action of Gr on E[n], i.e., for all o € Gr one has

o(P) € (P).

@ One has that a cyclic order n subgroup (P) is F-rational iff

one has
%
PE.nP,Q(GF) C { [0 J }

for some Q € E[n] where {P, Q} is a basis.

e (This is related to understanding rational cyclic isogenies of
elliptic curves.)

@ One has pg n(Gr) = 1iff F(E[n]) = F.



Research in elliptic curves:
cyclotomic division fields



Cyclotomy in division fields

e Torsion points of elliptic curves E/F are closely connected to

roots of unity ¢ € F, which are elements in F of finite
multiplicative order:
=1

for some n € ZT. We will write {, for a primitive n'th root of
unity (exact order n).

@ By properties of the n-Weil pairing, one always has

Cn € F(E[n]).



@ A natural question is when are these two fields equal, i.e.,

F(Cn) = F(E[n]).

@ We call these division fields cyclotomic, or small.

@ Our previous example of an for the 3-division field of
E:y?=x3—2x

had (3 € Q(E[3]), as well as [Q(E[3]) : Q] = 16. Since
Q(¢3) = Q(+v/—3), we conclude that

Q(¢s) & Q(E[3))-



@ One can use computers to try and look for explicit examples
of cyclotomic division fields. Calculations would suggest this is
uncommon, and only happens for small n.

(2) (b)

Figure: An example of preliminary Magma code searching for cyclotomic
division fields, along with its output. Our code uses functions from [3],

and follows its subgroup labeling scheme.



@ A complete answer is known for elliptic curves over Q.

Theorem (Gonzalez-Jiménez and Lozano-Robledo, 2016 (4)).

Let E/Q be an elliptic curve. If one has Q(E[n]) = Q((y), then
n < 5. More generally, if Q(E[n])/Q is abelian then n < 8.

@ They prove this with a close analysis of mod-n Galois
representations over Q, with careful group-theoretic
considerations and explicit calculations with modular curves
over QQ, which are a sort of moduli space for elliptic curves
with specific torsion group structure.

@ They are able to use the wealth of progress towards
understanding rational points on modular curves, and Galois
representations over Q.



o Considerably less is known about Galois representations and
modular curves over number fields larger than Q.

@ However, we are able to prove the following uniformity result
for prime levels.

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p € Z"
a prime.

Q@ IfF(E[p]) = F(¢p), then p is uniformly bounded in F.

@ If F(E[p])/F is abelian, then p is uniformly bounded in F.*

*Under these two technical hypotheses: that the Generalized Riemann
Hypothesis (GRH) is true, and that F does not contain the Hilbert class field of
an imaginary quadratic number field.



Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p € Z"
a prime.

Q@ IfF(E[p]) = F(¢p), then p is uniformly bounded in F.
@ If F(E[p])/F is abelian, then p is uniformly bounded in F.*

o If F(E[p]) = F(p), then p is bounded super-exponentially in
terms of [F : Q).

o If F(E[p])/F(Cp) is abelian, then p is similarly bounded in
terms of [F : Q]!

@ Our explicit bounds depend on bounds for orders of torsion
points over number fields in terms of the degree of the field
(which are conjectured to be polynomial in [F : Q].)



|deas behind the proof:



@ We will focus on the how we can prove uniform bounds on
primes p which appear for small p-division fields over F:

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p € 7"
a prime. If F(E[p]) = F((p), then p is uniformly bounded in F.




Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and p € Z©
a prime. If F(E[p]) = F((p), then p is uniformly bounded in F.

@ Unlike the result over QQ, the impetus of our proof is the fact
that F(E[n]) = F(¢n) if and only if

pE7,,(GF) N SLQ(Z/”Z) =1,

where SLy(Z/nZ) are the matrices in GL2(Z/nZ) with
determinant 1.

@ This puts constraints on what the image pg (GFr) can be.



@ Why is our result for prime levels p? Two reasons:
@ There exists a classification of subgroups of GLy(Z/pZ).
(“algebra™)
@ There exists work on Serre for understanding the mod-p
images of inertia. (“arithmetic”)
@ Together, the algebra and arithmetic lets us put constraints
“above and below" the image pg ,(Gr), which lets us
uniformly bound p.



@ We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on

pE,p(GF)-

Let G C GLy(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy):
Q@ G contains SLy(Z/ pZ).

@ G is upper triangular.

@ G is contained in the normalizer of a split or nonsplit Cartan subgroup.

@ The quotient G/G N (Z/pZ)* | is isomorphic to As, Sy or As.




@ We have a classification of subgroups of GL2(Z/pZ) by work
of Dickson/Serre, which give us our “upper bounds” on
pE,p(GF)-

Let G C GLy(Z/pZ) be any subgroup. Then one of the following holds
(up to conjugacy). Assuming that G NSLy(Z/pZ) = 1:

O  Gcontains Sko(7/p7)-
@ G is upper triangular and in fact diagonalizable.

@ G is contained in the normalizer of a split or nonsplit Cartan

subgroup and is generated by any non-Cartan element in G, along
with the subgroup G N (Z/pZ)* 1.

o T et G/GAHELPEY | is-i L b S e




Arithmetic

@ On the other hand, Serre has provided a description for the
action of the inertia subgroup of Gk on an elliptic curve's
p-torsion subgroup E[p], when K is a local field.

@ We can use this to prove the following almost purely
group-theoretic result (essentially due to Serre).



(Abridged) Let E/F be an elliptic curve, p € Z* a prime and B a prime
in F over p. Let e := e(P | p) denote the ramification index of B over p,
and set G := pg p(GF). Assume that pt#G, and that E has semistable
reduction at 3. The following is true up to conjugacy:

@ If E has good ordinary or bad multiplicative reduction at 33, then

{lo 3 }ee

@ If E has good supersingular reduction at B, then G contains the
e 'th power of the non-split Cartan subgroup. In particular, its size
(p? — 1)/ ged(p? — 1, e) divides #G.

.

@ This gives us our “lower bounds” on pg ,(GF).

@ Combining these two results lets us prove bounds on p in
terms of e < [F : Q), giving us uniform bounds.



@ The work involved in this theorem can be summarized as
follows:

© Assume pg »(Gr) N SLo(Z/pZ) = 1.

@ Describe the “shape” of pg ,(GF) via the classification of
subgroups of GLy(Z/pZ).

© Black-box work of Serre to analyze which groups must appear
in PE,p(GF)-

© Use the three items above to drastically reduce which options
can appear for pe ,(Gr); determine what these options say
about rationality of p-torsion on E/F.

@ Cite results on uniformly bounding order of prime torsion
points of elliptic curves over number fields.

@ The majority of this project is elementary group theory
calculations, and working with Galois theory conceptually.

@ Our paper can be found at this arXiv identifier: 2511.23381


https://arxiv.org/abs/2511.23381

Figure: From the 2025 Cycle Fair. Sam A., David K. and me.



Future projects:



@ Are there uniform bounds on levels of division fields over
number fields with a property besides ‘cyclotomic’ or
"abelian’?

@ For example, nilpotent division fields have uniform bounds

connected to Mersenne primes. This has been studied over Q
by Daniels and Rouse: 2409.00881

e Finally, our preliminary searches for small division fields
suggested that uniform bounds of p < 7 worked over all
number fields that we checked from the LMFDB. Can we
push the algebra/arithmetic further to prove a sharper uniform
bound?


https://arxiv.org/abs/2409.00881
https://www.lmfdb.org/

Thank you!
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