

Elliptic Curves, Torsion Points and Galois Representations

Tyler Genao

Carnegie Mellon University
January 30, 2026

- The goal of this talk is to introduce you to the study of elliptic curves and their torsion points via (almost purely) group-theoretic considerations.
- Hopefully I can convince you that you can do elliptic curves research with some experience in abstract algebra!
- Here is an outline:
 - 1 Describe elliptic curves and torsion points.
 - 2 Define division fields and Galois representations of elliptic curves.
 - 3 Illustrate how group theory is used in understanding torsion points, via explicit matrix calculations.
 - 4 Share some research vistas.

What is an elliptic curve?

- Elliptic curves are special algebraic curves where **points can be added together** to produce more points on the curve.
- An **elliptic curve** E defined over a field F , written E/F , is a nonsingular curve defined by the equation

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

where $a_1, a_2, a_3, a_4, a_6 \in F$.

- When the characteristic of F is not 2, elliptic curves E/F also have an equation of the form

$$E : y^2 = x^3 + Ax + B$$

where $A, B \in F$.

- These equations are called *Weierstrass forms*.

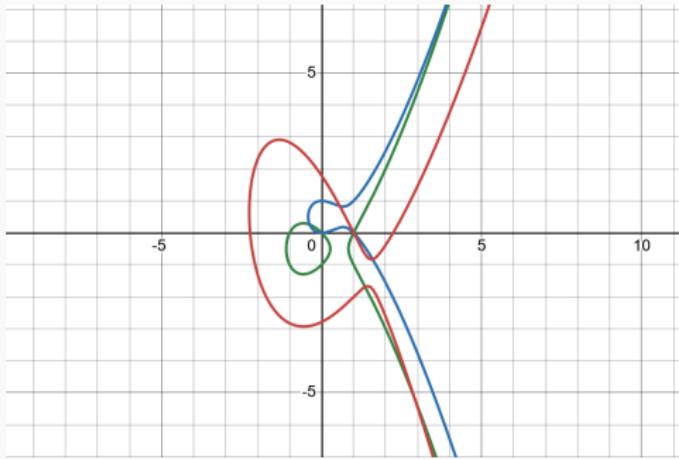
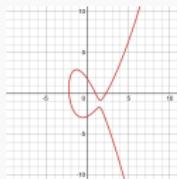
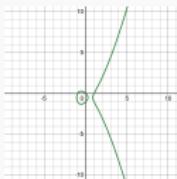


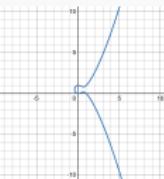
Figure: Three elliptic curves pictured above each other in \mathbb{R}^2 , also seen below.



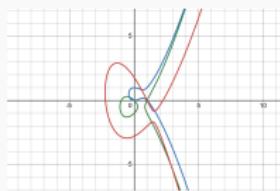
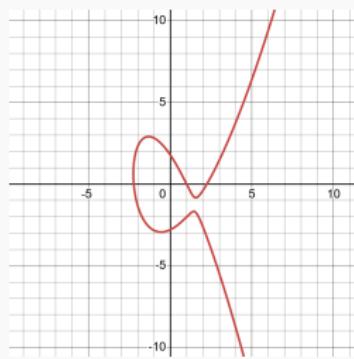
(a)



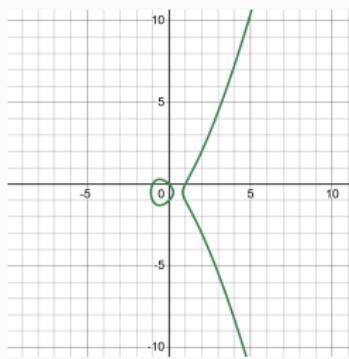
(b)



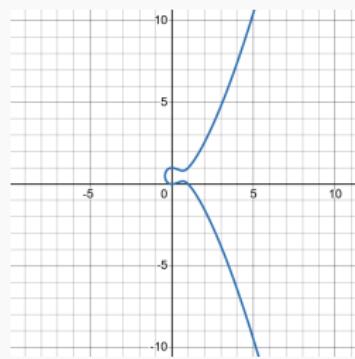
(c)



$$E_1 : y^2 + xy + y = x^3 - x^2 - 5x + 5$$



$$E_2 : y^2 + y = x^3 - x$$



$$E_3 : y^2 - y = x^3 - x^2$$

- Elliptic curves E/F always have a point that lies beyond the affine plane F^2 , called the *point at infinity*. This point O can only be seen in *projective space*.

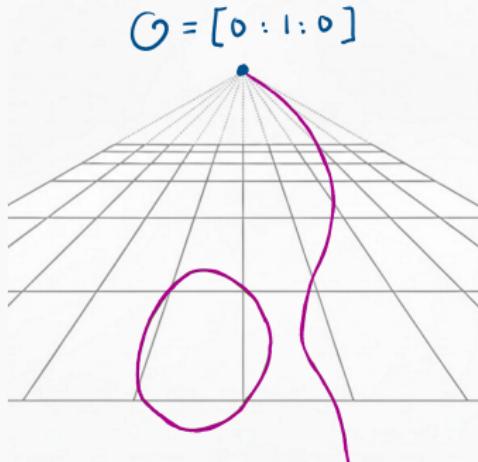
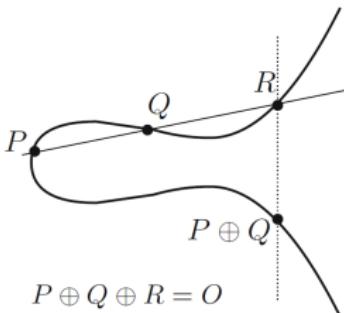


Figure: An elliptic curve pictured in real projective space \mathbb{RP}^2 , with point at infinity O . “Parallel lines in \mathbb{R}^2 converge in \mathbb{RP}^2 .”

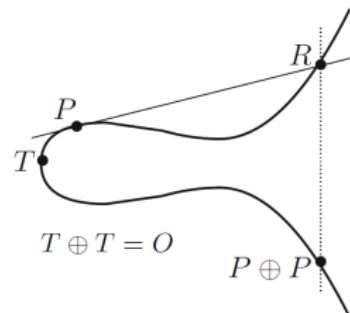
- A great video on visualizing the projective space is *Putting Algebraic Curves in Perspective*, by Shillito.

The group law

- For an elliptic curve E/F , let $E(F)$ denote its set of F -rational points on E .
- Then $E(F)$ is a group under a *chord and tangent method*.



Addition of distinct points



Adding a point to itself

Figure: Example of the chord and tangent method on an elliptic curve E/\mathbb{R} . From [1].

- This group law was described geometrically, but its algebraic constructions also hold over fields beyond \mathbb{R} :

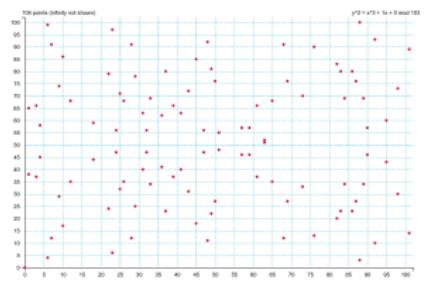


Figure: The elliptic curve $y^2 = x^3 + x$ over the finite field of size 103.



Figure: An elliptic curve as a complex torus \mathbb{C}/Λ . Right picture from [2].

Torsion points

- To make things easier, let us assume our fields F are *number fields* (finite degree extensions of \mathbb{Q}).
- The group law on an elliptic curve E/F extends from $E(F)$ to $E(\mathbb{C})$.
- Points $P \in E(\mathbb{C})$ with finite order are called **torsion points**: there exists $n \in \mathbb{Z}^+$ with

$$nP := \underbrace{P \oplus P \oplus \cdots \oplus P}_{n \text{ times}} = O.$$

Such a point is also called an **n -torsion point**.

- The subgroup of n -torsion points on E is called the **n -torsion subgroup of E** , and is denoted by $E[n]$. General theory shows that $\#E[n] = n^2$.

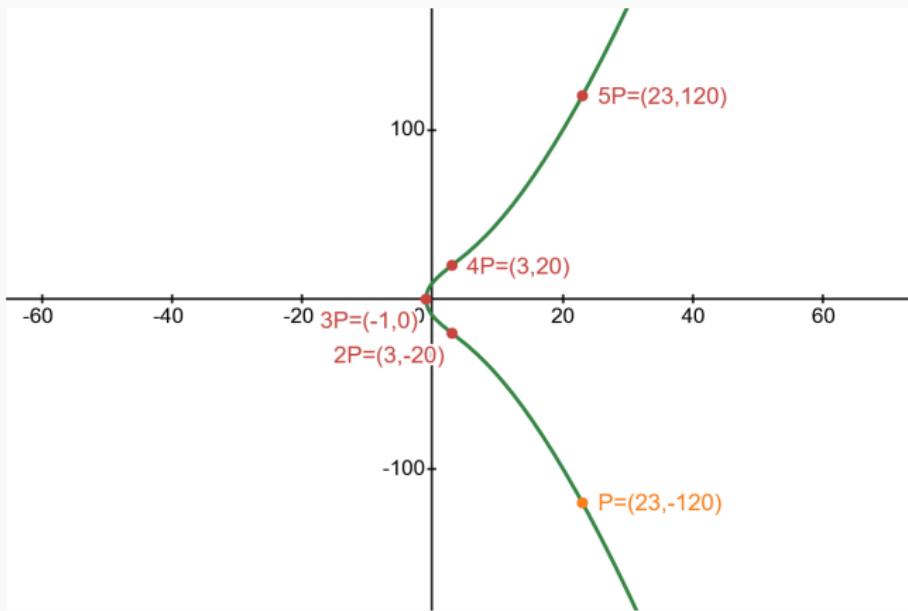


Figure: The elliptic curve $E : y^2 = x^3 + 93x + 94$, with its order 6 torsion point $P = (23, -120)$ and its multiples.

Division fields and Galois representations

- For an elliptic curve E/F , an n -torsion point $P \in E(\mathbb{C})$ satisfies

$$nP = O.$$

Similar to algebraic numbers, this implies that the x and y -coordinates of P are roots of polynomials over F . (keyword: *division polynomials*.)

- A portion of arithmetic geometry research is dedicated to understanding the *rationality* of torsion points, i.e., understanding over which fields torsion points live.
- One way to understand rationality of torsion points is through studying **division fields** and **Galois representations** of elliptic curves.

Division fields

- Given E/F , for each integer $n > 0$ we let $F(E[n])$ denote the **n -division field of E/F** , obtained by adjoining all x and y -coordinates of n -torsion points from E onto F .
- Since coordinates of torsion points are algebraic numbers, the n -division field is always a finite extension of F .

- An example: consider the elliptic curve

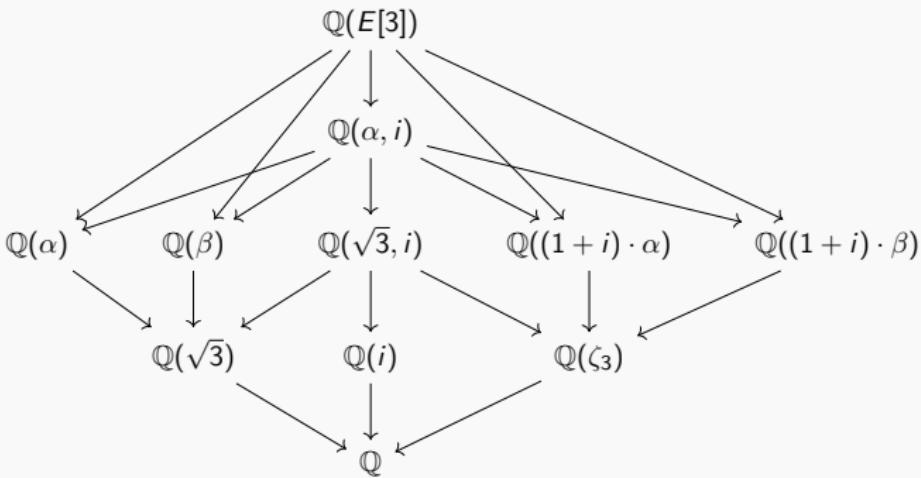
$$E : y^2 = x^3 - 2x.$$

- It has 2-torsion subgroup $E[2] = \{O, (0, 0), (\pm\sqrt{2}, 0)\}$.
- Thus its 2-division field is $\mathbb{Q}(E[2]) = \mathbb{Q}(\sqrt{2})$.
- With extra work, one can check that

$$E[3] = \left\{ O, \left(\alpha, \pm \sqrt{\alpha^3 - 2\alpha} \right) \mid \alpha = \pm \sqrt{-2 \pm \frac{4}{\sqrt{3}}} \right\}.$$

$\mathbb{Q}(E[3])/\mathbb{Q}$ is Galois, with degree 16.

- Since $i, 3^{1/4} \in \mathbb{Q}(E[3])$, this field also contains the primitive cube root of unity $\zeta_3 := e^{\frac{2\pi i}{3}} = \frac{-1 + \sqrt{-3}}{2}$, where $\zeta_3^3 = 1$.



- In the above, we let $\alpha := \sqrt{-2 + \frac{4}{\sqrt{3}}}$ and $\beta := \sqrt{-2 - \frac{4}{\sqrt{3}}}$.
- Then $\mathbb{Q}(\alpha, i)$ is the splitting field of $\psi_{E,3}(x) := 3x^4 + 12x^2 - 4$, whose roots are $\pm\alpha$ and $\pm\beta$, the x -coordinates of the order 3 points on E .
- $\text{Gal}(\mathbb{Q}(\alpha, i)/\mathbb{Q}) \cong D_4$, the dihedral group of order 8 (symmetry group of the square).
- $\mathbb{Q}(E[3])/\mathbb{Q}(\alpha, i)$ is a quadratic extension. Can you find a generator?

The Galois action on torsion

- For an elliptic curve E/F , one important interpretation of its n -division field $F(E[n])/F$ is as the *fixed field* under the Galois action on $E[n]$.
- Let \overline{F} denote an *algebraic closure* of F . This is e.g. the subfield of \mathbb{C} of all elements which are algebraic over F , i.e., are roots of polynomials over F .
- Consider the *absolute Galois group* of F :

$$G_F := \text{Gal}(\overline{F}/F).$$

- G_F consists of F -automorphisms $\sigma: \overline{F} \xrightarrow{\sim} \overline{F}$; these describe where to send *every single algebraic number* over F .

- For any elliptic curve E/F and integer $n > 0$, the absolute Galois group G_F acts on $E[n]$ coordinate-wise:

$$\sigma \cdot (x, y) := (\sigma(x), \sigma(y)).$$

- This group action homomorphism is called the **mod- n Galois representation of E/F** :

$$\rho_{E,n} : G_F \rightarrow \text{Aut}(E[n]).$$

- It is the case that $E[n]$ is a free rank two $\mathbb{Z}/n\mathbb{Z}$ -module. Fixing a basis for $E[n]$, our representation can be written as

$$\rho_{E,n}: G_F \rightarrow \mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z}),$$

where $\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$ is the group of 2×2 invertible matrices over $\mathbb{Z}/n\mathbb{Z}$.

- We have $\ker \rho_{E,n} = \mathrm{Gal}(\overline{F}/F(E[n]))$, so that $F(E[n])/F$ is Galois. Modding out by the kernel gives a faithful representation

$$\rho_{E,n}: \mathrm{Gal}(F(E[n])/F) \hookrightarrow \mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z}).$$

- Explicitly, if $\{P, Q\}$ is a basis for $E[n]$, then the image $\rho_{E,n}(G_F)$ can be described explicitly: for $\sigma \in G_F$, one has

$$\rho_{E,n}(\sigma) = \begin{bmatrix} P & Q \\ a & b \\ c & d \end{bmatrix}$$

if and only if

$$\begin{aligned}\sigma(P) &= aP + cQ, \\ \sigma(Q) &= bP + dQ.\end{aligned}$$

- Sometimes we write $\rho_{E,n,P,Q}$ instead of $\rho_{E,n}$ to specify the basis.

Common shapes

- We can describe rationality of n -torsion points via the “shape” of the Galois representation.
- For an elliptic curve E/F , a point $P \in E[n]$ of order n is F -rational if and only if for $Q \in E[n]$ with $\{P, Q\}$ a basis, one has

$$\rho_{E,n,P,Q}(G_F) \subseteq B_1(n) := \left\{ \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix} \right\} :$$

$$\rho_{E,n,P,Q}(\sigma) = \begin{matrix} P & Q \\ \textcolor{red}{P} & \textcolor{blue}{Q} \end{matrix} \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix} \iff \sigma(\textcolor{red}{P}) = \textcolor{red}{P}.$$

- Thus E has an F -rational point of order n iff $\rho_{E,n}(G_F)$ is contained in $B_1(n)$ up to conjugacy.

- Say the *subgroup* $\langle P \rangle \subseteq E[n]$ is *F-rational* if $\langle P \rangle$ is fixed by the action of G_F on $E[n]$, i.e., for all $\sigma \in G_F$ one has

$$\sigma(P) \in \langle P \rangle.$$

- One has that a cyclic order n subgroup $\langle P \rangle$ is *F-rational* iff one has

$$\rho_{E,n,P,Q}(G_F) \subseteq \left\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \right\}$$

for some $Q \in E[n]$ where $\{P, Q\}$ is a basis.

- (This is related to understanding *rational cyclic isogenies of elliptic curves*.)
- One has $\rho_{E,n}(G_F) = 1$ iff $F(E[n]) = F$.

Research in elliptic curves:
cyclotomic division fields

Cyclotomy in division fields

- Torsion points of elliptic curves E/F are closely connected to **roots of unity** $\zeta \in \overline{F}$, which are elements in \overline{F}^\times of finite multiplicative order:

$$\zeta^n = 1$$

for some $n \in \mathbb{Z}^+$. We will write ζ_n for a *primitive* n 'th root of unity (exact order n).

- By properties of the n -Weil pairing, one always has

$$\zeta_n \in F(E[n]).$$

- A natural question is **when are these two fields equal**, i.e.,

$$F(\zeta_n) = F(E[n]).$$

- We call these division fields **cyclotomic**, or **small**.
- Our previous example of an for the 3-division field of

$$E : y^2 = x^3 - 2x$$

had $\zeta_3 \in \mathbb{Q}(E[3])$, as well as $[\mathbb{Q}(E[3]) : \mathbb{Q}] = 16$. Since $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$, we conclude that

$$\mathbb{Q}(\zeta_3) \subsetneq \mathbb{Q}(E[3]).$$

- One can use computers to try and look for explicit examples of cyclotomic division fields. Calculations would suggest this is uncommon, *and only happens for small n* .

```

1 load "leadingDigits.m";
2 load "SmallSL2.m"; //774037 elliptic curves defined over Q(i) from the LMFDB
3 load "SmallSL2.m"; //code of computing mod-p images from "Computing Galois Images..." by Sutherland
4 SmallLevels:=[];
5 SmallSubgroups:=[];
6 Amt := 0; //number of small mod-p images
7 w for i in [1..n] do
8   if #d[i].g > 0 then
9     for HString in d[i] do //HString is the name of the exceptional mod-p subgroups for an EC
10       trivialIntersection_WithSL2:=true;
11       H := SL2SubgroupFromLabel(HString);
12       G := GroupFromLabels({leadingDigits(HString)});
13       for h in H do
14         if Determinant(h) eq 1 and h ne G[[1,0],[0,1]] then
15           trivialIntersection_WithSL2:=false;
16           break;
17         end if;
18       end for;
19       if trivialIntersection_WithSL2 eq true then
20         Amt := Amt+1;
21         if NotInList(SmallSubgroups, HString);
22           Append(~SmallSubgroups, HString);
23         if LeadingDigits(HString)notin SmallLevels then
24           Append(~SmallLevels, LeadingDigits(HString));
25         end if;
26       end if;
27     end for;
28   end if;
29 end for;
30 Amt //Approximately, RealField(5)((#data - Amt)/#data) *100,"% of elliptic curves over Q(i) have a small division field.";
31 SmallLevels;
32 SmallSubgroups;

```

(a)

```

Approximately 92.434 % of elliptic curves over Q(i) have a small division field.
SmallLevels;
[ 5, 2, 3 ]
> SmallSubgroups;
[ 5Cs.1.1, 2Cs, 3Cs.1.1, 5Cs.1.3 ]

```

(b)

Figure: An example of preliminary Magma code searching for cyclotomic division fields, along with its output. Our code uses functions from [3], and follows its subgroup labeling scheme.

- A complete answer is known for elliptic curves over \mathbb{Q} .

Theorem (González-Jiménez and Lozano-Robledo, 2016 (4)).

Let E/\mathbb{Q} be an elliptic curve. If one has $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n \leq 5$. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian then $n \leq 8$.

- They prove this with a close analysis of mod- n Galois representations over \mathbb{Q} , with careful group-theoretic considerations and explicit calculations with *modular curves* over \mathbb{Q} , which are a sort of moduli space for elliptic curves with specific torsion group structure.
- They are able to use the wealth of progress towards understanding rational points on modular curves, and Galois representations over \mathbb{Q} .

- Considerably less is known about Galois representations and modular curves over number fields larger than \mathbb{Q} .
- However, we are able to prove the following uniformity result for prime levels.

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and $p \in \mathbb{Z}^+$ a prime.

- a. If $F(E[p]) = F(\zeta_p)$, then p is uniformly bounded in F .
- b. If $F(E[p])/F$ is abelian, then p is uniformly bounded in F .*

*Under these two technical hypotheses: that the Generalized Riemann Hypothesis (GRH) is true, and that F does not contain the Hilbert class field of an imaginary quadratic number field.

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and $p \in \mathbb{Z}^+$ a prime.

- a. If $F(E[p]) = F(\zeta_p)$, then p is uniformly bounded in F .
 - b. If $F(E[p])/F$ is abelian, then p is uniformly bounded in F .*
-
- If $F(E[p]) = F(\zeta_p)$, then p is bounded super-exponentially in terms of $[F : \mathbb{Q}]$.
 - If $F(E[p])/F(\zeta_p)$ is abelian, then p is similarly bounded in terms of $[F : \mathbb{Q}]!$.
 - Our explicit bounds depend on bounds for orders of torsion points over number fields in terms of the degree of the field (which are conjectured to be polynomial in $[F : \mathbb{Q}]$.)

Ideas behind the proof:

- We will focus on the how we can prove uniform bounds on primes p which appear for small p -division fields over F :

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and $p \in \mathbb{Z}^+$ a prime. If $F(E[p]) = F(\zeta_p)$, then p is uniformly bounded in F .

Theorem 1 (Allen, G., 2025).

Let F be a number field. Let E/F be an elliptic curve and $p \in \mathbb{Z}^+$ a prime. If $F(E[p]) = F(\zeta_p)$, then p is uniformly bounded in F .

- Unlike the result over \mathbb{Q} , the impetus of our proof is the fact that $F(E[n]) = F(\zeta_n)$ if and only if

$$\rho_{E,n}(G_F) \cap \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z}) = 1,$$

where $\mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$ are the matrices in $\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$ with determinant 1.

- This puts constraints on what the image $\rho_{E,n}(G_F)$ can be.

- Why is our result for prime levels p ? Two reasons:
 1. There exists a classification of subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$. (“algebra”)
 2. There exists work on Serre for understanding the mod- p images of inertia. (“arithmetic”)
- Together, the **algebra** and **arithmetic** lets us put constraints “above and below” the image $\rho_{E,p}(G_F)$, which lets us uniformly bound p .

Algebra

- We have a classification of subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ by work of Dickson/Serre, which give us our “upper bounds” on $\rho_{E,p}(G_F)$.

Theorem.

Let $G \subseteq \mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ be any subgroup. Then one of the following holds (up to conjugacy):

- a. G contains $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$.
- b. G is upper triangular.
- c. G is contained in the normalizer of a split or nonsplit Cartan subgroup.
- d. The quotient $G/G \cap (\mathbb{Z}/p\mathbb{Z})^\times I$ is isomorphic to A_4 , S_4 or A_5 .

Algebra

- We have a classification of subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ by work of Dickson/Serre, which give us our “upper bounds” on $\rho_{E,p}(G_F)$.

Theorem.

Let $G \subseteq \mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ be any subgroup. Then one of the following holds (up to conjugacy). Assuming that $G \cap \mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z}) = 1$:

- a. ~~G contains $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$.~~
- b. G is upper triangular *and in fact diagonalizable*.
- c. G is contained in the normalizer of a split or nonsplit Cartan subgroup *and is generated by any non-Cartan element in G , along with the subgroup $G \cap (\mathbb{Z}/p\mathbb{Z})^\times I$.*
- d. ~~$\mathrm{The\ quotient\ } G/G \cap (\mathbb{Z}/p\mathbb{Z})^\times I\ \mathrm{is\ isomorphic\ to\ } A_4,\ S_4\ \mathrm{or\ } A_5.$~~

Arithmetic

- On the other hand, Serre has provided a description for the action of the *inertia subgroup* of G_K on an elliptic curve's p -torsion subgroup $E[p]$, when K is a local field.
- We can use this to prove the following almost purely group-theoretic result (essentially due to Serre).

Theorem.

(Abridged) Let E/F be an elliptic curve, $p \in \mathbb{Z}^+$ a prime and \mathfrak{P} a prime in F over p . Let $e := e(\mathfrak{P} \mid p)$ denote the ramification index of \mathfrak{P} over p , and set $G := \rho_{E,p}(G_F)$. Assume that $p \nmid \#G$, and that E has semistable reduction at \mathfrak{P} . The following is true up to conjugacy:

- a. If E has good ordinary or bad multiplicative reduction at \mathfrak{P} , then

$$\left\{ \begin{bmatrix} * & 0 \\ 0 & 1 \end{bmatrix}^e \right\} \subseteq G.$$

- b. If E has good supersingular reduction at \mathfrak{P} , then G contains the e 'th power of the non-split Cartan subgroup. In particular, its size $(p^2 - 1) / \gcd(p^2 - 1, e)$ divides $\#G$.

- This gives us our “lower bounds” on $\rho_{E,p}(G_F)$.
- Combining these two results lets us prove bounds on p in terms of $e \leq [F : \mathbb{Q}]$, giving us **uniform bounds**.

- The work involved in this theorem can be summarized as follows:
 - ➊ Assume $\rho_{E,p}(G_F) \cap \mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z}) = 1$.
 - ➋ Describe the “shape” of $\rho_{E,p}(G_F)$ via the classification of subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$.
 - ➌ **Black-box** work of Serre to analyze which groups must appear in $\rho_{E,p}(G_F)$.
 - ➍ Use the three items above to drastically reduce which options can appear for $\rho_{E,p}(G_F)$; determine what these options say about rationality of p -torsion on E/F .
 - ➎ Cite results on uniformly bounding order of prime torsion points of elliptic curves over number fields.
- The majority of this project is elementary group theory calculations, and working with Galois theory conceptually.
- Our paper can be found at this arXiv identifier: [2511.23381](https://arxiv.org/abs/2511.23381)

Figure: From the 2025 Cycle Fair. Sam A., David K. and me.

Future projects:

- Are there uniform bounds on levels of division fields over number fields with a property besides 'cyclotomic' or 'abelian'?
- For example, **nilpotent** division fields have uniform bounds connected to *Mersenne primes*. This has been studied over \mathbb{Q} by Daniels and Rouse: [2409.00881](#)
- Finally, our preliminary searches for small division fields suggested that uniform bounds of $p \leq 7$ worked over all number fields that we checked from the LMFDB. Can we push the algebra/arithmetic further to prove a sharper uniform bound?

Thank you!

References (in order of appearance):

- ① J. Silverman, *The arithmetic of elliptic curves*, 2nd Ed., Graduate Texts in Mathematics, vol. 106, Springer (2009).
- ② L. Washington, *Elliptic curves. Number theory and cryptography*, 2nd Ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL (2008).
- ③ A. Sutherland, *Computing images of Galois representations attached to elliptic curves*, Forum Math. Sigma 4 (2016), Paper No. e4, 79 pp.
- ④ E. González-Jiménez and Á. Lozano-Robledo, *Elliptic curves with abelian division fields*, Math. Z. 283 (2016), no. 3-4, 835–859.
- ⑤ S. Allen and T. Genao, *Uniform bounds on the level of cyclotomic division fields of elliptic curves*, preprint, <https://arxiv.org/abs/2511.23381>.
- ⑥ H. Daniels and J. Rouse, *Near coincidences and nilpotent division fields*, preprint, <https://arxiv.org/abs/2409.00881>.