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e For a field k, an elliptic curve E/k is a curve in k? defined by
an equation

E:y2—|—alxy+a3y:x3+agx2+a4x+36

where each a; € k, with a discriminant condition A # 0.

@ The most remarkable property of an elliptic curve is that the
set E(k) of k-rational points on E is an abelian group:
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Figure 3.3: The composition law.

Figure: The chord and tangent method on an elliptic curve E/R in
Weierstrass form. From Silverman's “The Arithmetic of Elliptic Curves.”



@ More can be said about the group structure of the
Mordell-Weil group E(k) when k = F is a number field (finite
degree extension of Q).

Theorem (Mordell-Weil Theorem).

For a number field F and for any elliptic curve E/F, the group
E(F) is a finitely generated abelian group: there exist points
Pi, P, ..., Py € E(F) such that for all P € E(F), one has

P:anl@nng@...GankPk

for some ni,ny, ..., n, € Z.




@ By the structure theorem for finitely generated abelian groups,
this theorem implies that

E(F) = Z" @ E(F)[tors]

for some integer r > 0 and some finite group E(F)[tors].

@ E(F)[tors] is called the torsion subgroup of E over F. It is a
finite abelian group.

e What do we know about E(F)[tors| as E/F varies?



@ Here is a classic result on rational torsion groups due to
Mazur.

Theorem (Mazur, 1977).

Let E/Q be an elliptic curve. Then E(Q)[tors] is isomorphic to
one of the following 15 groups:

Z/NZ N=12,...,10,12,
7/27 & 7./2NZ N=1,234.

@ In this case, we have #E(Q)[tors] < 16.



@ There have been extensions to quadratic and cubic number fields, too:

Theorem (Kenku-Momose, 1988; Kamienny, 1992).

Let K be a quadratic number field and let E/K be an elliptic curve. Then E(K)[tors]
is isomorphic to one of the following 26 groups:

Z/NZ N=1,2,...,16,18,
Z/2Z & 7/2NZ N=1,2,...,6,
7./37 @& Z/3NZ =12,

Z/47 & 7./47.

@ . #E(K)[tors] < 24 when K/Q is quadratic.

Theorem (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown, 2021).

Let F be a cubic number field and let E/F be an elliptic curve. Then E(F)[tors] is
isomorphic to one of the following 26 groups:

Z/NZ 1,2,...,16,18,20,21,
Z)27 ® Z./2NZ N=1,2,...,7.

@ . #E(F)[tors] < 28 when F/Q is cubic.



o In general, E(F)[tors] can be arbitrarily large when [F : Q] is
arbitrarily large.

@ However, when [F : Q)] is bounded, so are torsion group sizes:

Theorem (Merel, 1996).

For each d € 7, there exists a constant B := B(d) € Z* so that
for all elliptic curves E /F where [F : Q] = d one has

#E(F)[tors] < B.

@ Therefore, there is a “strong uniform boundedness” in torsion
groups of elliptic curves over number fields.



Theorem (Merel, 1996).

For each d € 7, there exists a constant B := B(d) € Z* so that
for all elliptic curves E/F where [F : Q] = d one has

#E(F)[tors] < B.

e Explicitly, Merel gave a bound on p | #E(F)[tors] in terms of
d>1(1996):

p | #E(F)[tors] = p < &3
o Parent later improved this (1999):

pX | #E(F)[tors] = p* < 129(59 — 1)(3d)°.



Theorem (Merel, 1996).

For each d € 7, there exists a constant B := B(d) € Z" so that
for all elliptic curves E /F where [F : Q] = d one has

#E(F)[tors] < B.

@ Can we sharpen the bounds B?
@ Sharper bounds are currently not known, but we can do better
once restricting to special families of elliptic curves.

@ We will start with considering the family of elliptic curves with
complex multiplication (or CM for short), which we denote
by -FCM-

o CM elliptic curves have endomorphism rings are strictly larger
than Z.



Theorem (Clark and Pollack, 2015).

There exists an absolute, effectively computable constant ¢ € 7™
such that for all number fields F /Q with d := [F : Q] > 3 and for
all CM elliptic curves E/F, one has

#E(F)[tors] < c-dloglogd.”

*Here, log stands for In.

@ Thus, for all € > 0, one has for CM elliptic curves E/F that
#E(F)[tors] <. d*e.

This is an example of a polynomial bound.



@ Torsion groups of CM elliptic curves also exhibit “Merel-like"
behavior in another way:

Theorem (Bourdon, Clark and Pollack, 2017).

For each € > 0, there exists a constant B, > 0 such that the set
{d € Z* : 3FQ with [F : Q] = d and CM E/F with #E(F)[tors] > B.}

has upper density < e.

@ In particular, for each 0 < € < 1, there is a bound B, which
bounds torsion groups of CM elliptic curves, over a subset of
degrees in ZT of upper density > 1 —e.

@ We say here that torsion groups of CM elliptic curves are
typically bounded.



@ Thus, our two types of torsion bounds on Fcyr are:
@ Polynomial bounds;
@ Typical bounds.
@ By the above results, torsion groups of non-CM elliptic curves
are more mysterious.

@ One place to start studying non-CM torsion is in the family
Fq of elliptic curves E/F with Q-rational j-invariant:

Fo :={E/F:j(E) € Q}.




Theorem (Clark and Pollack, 2018).

For all e > 0, there exists a constant c. > 0 such that for all elliptic
curves E/F with j(E) € Q, one has

H#E(F)[tors] < c. - d°/?t¢

where d := [F : Q).

Theorem (Clark, Milosevic and Pollack, 2018).

For each € > 0, there exists a constant B, > 0 such that the set

{d € Z" :3F/Q with [F : Q] = d and CM E/F with #E(F)[tors] > B}

has upper density < e.

@ Thus, like Fc, the family Fg is both polynomially
bounded and typically bounded in torsion.



@ Torsion in Fg behaves well since it is intimately connected to
torsion of rational elliptic curves, as well as their Galois
representations, which are relatively well-understood.

@ Our next family is a generalization of Fq.
e For elliptic curves E, E' defined over Q, an isogeny ¢: E — E’

defined over QQ is called a geometric isogeny.

o "“Being geometrically isogenous” is an equivalence relation. An
equivalence class here is called a geometric isogeny class.

@ Unlike a rational isogeny class, a geometric isogeny class is
infinite.



@ Let us define

Iy := {E/F : E is Q-isogenous to some E'/Q}.

@ Ty is the union over all rational geometric isogeny classes
(those which contain at least one rational elliptic curve).

@ We have Fg C Zg; in fact, Zg contains elliptic curves with
J-invariants of arbitrarily large degree over Q.



Iy := {E/F : E is Q-isogenous to some E’'/Q}.

Here is some context for the family Zg.
@ Torsion groups of (non-CM) elliptic curves E/F € Zgp behave
very similarly to elliptic curves over Q:
e By work of Cremona and Najman, if [F : Q] is a prime > 11,
then E(F)[tors] is one of the 15 abelian groups from Mazur's
torsion theorem over Q.



Fo :={E/F:J(E) € Q}.

Iy := {E/F : E is Q-isogenous to some E’'/Q}.

The family Zg is a special subfamily of Q-curves:
Fo & Lo & Qo

where

Qg :={E/F : Vo € Gal(Q/F), E is Q-isogenous to E”}.

is the family of Q-curves. We also have Qg 2 Foum.



Qg :={E/F : Vo € Gal(Q/F), E is Q-isogenous to E7}.

@ (Q-curves appear when studying solutions to Fermat-type
equations. They are in analogy to Frey curves, which are
curves over QQ induced from (hypothetical) rational solutions
to the Fermat equation x" 4 y" = z" where n > 3; these are
crucial in the proof of Fermat's Last Theorem.

@ These curves also have applications in cryptography. For
example, they can be used to speed up computations for
explicit isogenies between two isogenous supersingular elliptic
curves defined over a finite field.

@ The elliptic curves in Zg are called rational Q-curves.



Here are our new results on Zg:

Theorem 1 (Bourdon, G., 2025).

Torsion from Lgp is polynomially bounded. More precisely, for
each € > 0, there exists c. > 0 such that for any elliptic curve
E/F € Iy, one has

HE(F)[tors] < c. - d®™¢

where d := [F : Q).

@ Towards this result, we prove new lower bounds on degrees of
fields of definition of points on modular curves:



o Let Xi(n) denote the modular curve which is a moduli space
for elliptic curves E/Q with a point P € E(Q) of order n.
Points on X1(n) have the form x = [E, P] € Xi(n).

Theorem 2 (Bourdon, G., 2025)

Suppose n € Z is divisible only by primes ¢ > 37. Let E/Q be a
non-CM elliptic curve. Then for any x = [E, P] € X1(n), one has

2H<l‘e2>

where k is the number of exceptional primes of E/Q. This is what
deg(X1(n) — X(1)) is

deg(x) >

N \

y




| have also shown that Zg is typically bounded in torsion.

Theorem 3 (G., 2023).

For each € > 0, there exists a constant B. > 0 such that the set
{d € Z* : 3F/Q with [F : Q| = d, E/F € T and #E(F)[tors] > B.}

has upper density < e.

@ Towards this, | prove new results on ¢-adic valuations for
degrees of fields of definition of cyclic isogenies.



| am currently extending this work in two ways:

© Polynomial bounds on torsion from geometric isogeny classes
of higher-dimensional abelian varieties.
o Unlike studying Zg, | am doing this “one Q-isogeny class at a
time.”
e Polynomial bounds are closely controlled by the endomorphism
algebra of the abelian variety.

@ Polynomial and typical bounds on torsion of Q-curves in
Qo \ Zo.
o A place to start is to understand central Q-curves E/Q(j(E)).
By work of Sairaiji and Yamauchi, we know that
#E(Q(E)))[tors] only has 3 types of prime divisors, one of
which is related to 2-cocyles of Gal(Q/Q) which are induced
from isogenies between E and its Galois conjugates.



Thank you!
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