

Growth of Torsion Groups of Elliptic Curves in Geometric Isogeny Classes

Tyler Genao

arXiv's: [2409.08214](https://arxiv.org/abs/2409.08214), [2112.11566](https://arxiv.org/abs/2112.11566)

THE OHIO STATE UNIVERSITY

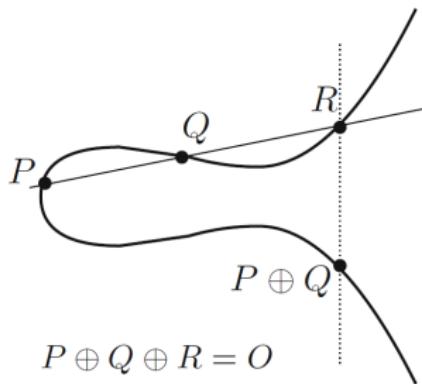
AMS Fall Eastern Virtual Sectional Meeting
October 26, 2025

- For a field k , an *elliptic curve* E/k is a curve in k^2 defined by an equation

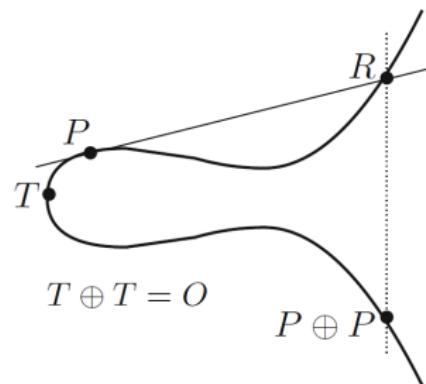
$$E : y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

where each $a_i \in k$, with a discriminant condition $\Delta \neq 0$.

- The most remarkable property of an elliptic curve is that the set $E(k)$ of k -rational points on E is an *abelian group*:



Addition of distinct points



Adding a point to itself

Figure 3.3: The composition law.

Figure: The chord and tangent method on an elliptic curve E/\mathbb{R} in Weierstrass form. From Silverman's "The Arithmetic of Elliptic Curves."

- More can be said about the group structure of the *Mordell-Weil group* $E(k)$ when $k = F$ is a *number field* (finite degree extension of \mathbb{Q}).

Theorem (Mordell-Weil Theorem).

For a number field F and for any elliptic curve E/F , the group $E(F)$ is a **finitely generated** abelian group: there exist points $P_1, P_2, \dots, P_k \in E(F)$ such that for all $P \in E(F)$, one has

$$P = n_1 P_1 \oplus n_2 P_2 \oplus \dots \oplus n_k P_k$$

for some $n_1, n_2, \dots, n_k \in \mathbb{Z}$.

- By the structure theorem for finitely generated abelian groups, this theorem implies that

$$E(F) \cong \mathbb{Z}^r \oplus E(F)[\text{tors}]$$

for some integer $r \geq 0$ and some finite group $E(F)[\text{tors}]$.

- $E(F)[\text{tors}]$ is called the **torsion subgroup** of E over F . It is a finite abelian group.
- **What do we know about $E(F)[\text{tors}]$ as E/F varies?**

- Here is a classic result on rational torsion groups due to Mazur.

Theorem (Mazur, 1977).

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})[\text{tors}]$ is isomorphic to one of the following 15 groups:

$$\mathbb{Z}/N\mathbb{Z} \quad N = 1, 2, \dots, 10, 12,$$

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z} \quad N = 1, 2, 3, 4.$$

- In this case, we have $\#E(\mathbb{Q})[\text{tors}] \leq 16$.

- There have been extensions to quadratic and cubic number fields, too:

Theorem (Kenku-Momose, 1988; Kamienny, 1992).

Let K be a quadratic number field and let E/K be an elliptic curve. Then $E(K)[\text{tors}]$ is isomorphic to one of the following 26 groups:

$$\mathbb{Z}/N\mathbb{Z}$$

$$N = 1, 2, \dots, 16, 18,$$

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$

$$N = 1, 2, \dots, 6,$$

$$\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N\mathbb{Z}$$

$$N = 1, 2,$$

$$\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.$$

- $\therefore \#E(K)[\text{tors}] \leq 24$ when K/\mathbb{Q} is quadratic.

Theorem (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown, 2021).

Let F be a cubic number field and let E/F be an elliptic curve. Then $E(F)[\text{tors}]$ is isomorphic to one of the following 26 groups:

$$\mathbb{Z}/N\mathbb{Z}$$

$$1, 2, \dots, 16, 18, 20, 21,$$

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$

$$N = 1, 2, \dots, 7.$$

- $\therefore \#E(F)[\text{tors}] \leq 28$ when F/\mathbb{Q} is cubic.

- In general, $E(F)[\text{tors}]$ can be arbitrarily large when $[F : \mathbb{Q}]$ is arbitrarily large.
- However, when $[F : \mathbb{Q}]$ is bounded, so are torsion group sizes:

Theorem (Merel, 1996).

For each $d \in \mathbb{Z}^+$, there exists a constant $B := B(d) \in \mathbb{Z}^+$ so that for all elliptic curves E/F where $[F : \mathbb{Q}] = d$ one has

$$\#E(F)[\text{tors}] \leq B.$$

- Therefore, there is a “strong uniform boundedness” in torsion groups of elliptic curves over number fields.

Theorem (Merel, 1996).

For each $d \in \mathbb{Z}^+$, there exists a constant $B := B(d) \in \mathbb{Z}^+$ so that for all elliptic curves E/F where $[F : \mathbb{Q}] = d$ one has

$$\#E(F)[\text{tors}] \leq B.$$

- Explicitly, Merel gave a bound on $p \mid \#E(F)[\text{tors}]$ in terms of $d > 1$ (1996):

$$p \mid \#E(F)[\text{tors}] \Rightarrow p \leq d^{3d^2}.$$

- Parent later improved this (1999):

$$p^k \mid \#E(F)[\text{tors}] \Rightarrow p^k \leq 129(5^d - 1)(3d)^6.$$

Theorem (Merel, 1996).

For each $d \in \mathbb{Z}^+$, there exists a constant $B := B(d) \in \mathbb{Z}^+$ so that for all elliptic curves E/F where $[F : \mathbb{Q}] = d$ one has

$$\#E(F)[\text{tors}] \leq B.$$

- Can we sharpen the bounds B ?
- Sharper bounds are currently not known, but we *can* do better once restricting to **special families** of elliptic curves.
- We will start with considering the family of elliptic curves with **complex multiplication** (or **CM** for short), which we denote by \mathcal{F}_{CM} .
- CM elliptic curves have *endomorphism rings* are strictly larger than \mathbb{Z} .

Theorem (Clark and Pollack, 2015).

There exists an absolute, effectively computable constant $c \in \mathbb{Z}^+$ such that for all number fields F/\mathbb{Q} with $d := [F : \mathbb{Q}] \geq 3$ and for all CM elliptic curves E/F , one has

$$\#E(F)[\text{tors}] \leq c \cdot d \log \log d. *$$

**Here, \log stands for \ln .*

- Thus, for all $\epsilon > 0$, one has for CM elliptic curves E/F that

$$\#E(F)[\text{tors}] \ll_{\epsilon} d^{1+\epsilon}.$$

This is an example of a **polynomial bound**.

- Torsion groups of CM elliptic curves also exhibit “Merel-like” behavior in another way:

Theorem (Bourdon, Clark and Pollack, 2017).

For each $\epsilon > 0$, there exists a constant $B_\epsilon > 0$ such that the set

$$\{d \in \mathbb{Z}^+ : \exists F/\mathbb{Q} \text{ with } [F : \mathbb{Q}] = d \text{ and CM } E/F \text{ with } \#E(F)[\text{tors}] > B_\epsilon\}$$

has upper density $\leq \epsilon$.

- In particular, for each $0 < \epsilon < 1$, there is a bound B_ϵ which bounds torsion groups of CM elliptic curves, over a subset of degrees in \mathbb{Z}^+ of upper density $\geq 1 - \epsilon$.
- We say here that torsion groups of CM elliptic curves are **typically bounded**.

- Thus, our two types of torsion bounds on \mathcal{F}_{CM} are:
 - ① Polynomial bounds;
 - ② Typical bounds.
- By the above results, torsion groups of non-CM elliptic curves are more mysterious.
- One place to start studying non-CM torsion is in the family $\mathcal{F}_{\mathbb{Q}}$ of elliptic curves E/F with \mathbb{Q} -rational j -invariant:

$$\mathcal{F}_{\mathbb{Q}} := \{E/F : j(E) \in \mathbb{Q}\}.$$

Theorem (Clark and Pollack, 2018).

For all $\epsilon > 0$, there exists a constant $c_\epsilon > 0$ such that for all elliptic curves E/F with $j(E) \in \mathbb{Q}$, one has

$$\#E(F)[\text{tors}] \leq c_\epsilon \cdot d^{5/2+\epsilon}$$

where $d := [F : \mathbb{Q}]$.

Theorem (Clark, Milosevic and Pollack, 2018).

For each $\epsilon > 0$, there exists a constant $B_\epsilon > 0$ such that the set

$$\{d \in \mathbb{Z}^+ : \exists F/\mathbb{Q} \text{ with } [F : \mathbb{Q}] = d \text{ and CM } E/F \text{ with } \#E(F)[\text{tors}] > B_\epsilon\}$$

has upper density $\leq \epsilon$.

- Thus, like \mathcal{F}_{CM} , the family $\mathcal{F}_{\mathbb{Q}}$ is both **polynomially bounded** and **typically bounded** in torsion.

- Torsion in $\mathcal{F}_{\mathbb{Q}}$ behaves well since it is intimately connected to torsion of *rational* elliptic curves, as well as their *Galois representations*, which are relatively well-understood.
- Our next family is a generalization of $\mathcal{F}_{\mathbb{Q}}$.
- For elliptic curves E, E' defined over $\overline{\mathbb{Q}}$, an isogeny $\phi: E \rightarrow E'$ defined over $\overline{\mathbb{Q}}$ is called a **geometric isogeny**.
- “Being geometrically isogenous” is an equivalence relation. An equivalence class here is called a **geometric isogeny class**.
- Unlike a rational isogeny class, a geometric isogeny class is *infinite*.

- Let us define

$$\mathcal{I}_{\mathbb{Q}} := \{E/F : E \text{ is } \overline{\mathbb{Q}}\text{-isogenous to some } E'/\mathbb{Q}\}.$$

- $\mathcal{I}_{\mathbb{Q}}$ is the union over all *rational* geometric isogeny classes (those which contain at least one rational elliptic curve).
- We have $\mathcal{F}_{\mathbb{Q}} \subsetneq \mathcal{I}_{\mathbb{Q}}$; in fact, $\mathcal{I}_{\mathbb{Q}}$ contains elliptic curves with j -invariants of arbitrarily large degree over \mathbb{Q} .

$$\mathcal{I}_{\mathbb{Q}} := \{E/F : E \text{ is } \overline{\mathbb{Q}}\text{-isogenous to some } E'/\mathbb{Q}\}.$$

Here is some context for the family $\mathcal{I}_{\mathbb{Q}}$.

- Torsion groups of (non-CM) elliptic curves $E/F \in \mathcal{I}_{\mathbb{Q}}$ behave very similarly to elliptic curves over \mathbb{Q} :
- By work of Cremona and Najman, if $[F : \mathbb{Q}]$ is a prime ≥ 11 , then $E(F)[\text{tors}]$ is one of the 15 abelian groups from Mazur's torsion theorem over \mathbb{Q} .

$$\mathcal{F}_{\mathbb{Q}} := \{E/F : j(E) \in \mathbb{Q}\}.$$

$$\mathcal{I}_{\mathbb{Q}} := \{E/F : E \text{ is } \overline{\mathbb{Q}}\text{-isogenous to some } E'/\mathbb{Q}\}.$$

The family $\mathcal{I}_{\mathbb{Q}}$ is a special subfamily of \mathbb{Q} -curves:

$$\mathcal{F}_{\mathbb{Q}} \subsetneq \mathcal{I}_{\mathbb{Q}} \subsetneq \mathcal{Q}_{\mathbb{Q}},$$

where

$$\mathcal{Q}_{\mathbb{Q}} := \{E/F : \forall \sigma \in \text{Gal}(\overline{\mathbb{Q}}/F), E \text{ is } \overline{\mathbb{Q}}\text{-isogenous to } E^{\sigma}\}.$$

is the family of **\mathbb{Q} -curves**. We also have $\mathcal{Q}_{\mathbb{Q}} \supsetneq \mathcal{F}_{\text{CM}}$.

$$\mathcal{Q}_{\mathbb{Q}} := \{E/F : \forall \sigma \in \text{Gal}(\overline{\mathbb{Q}}/F), E \text{ is } \overline{\mathbb{Q}}\text{-isogenous to } E^\sigma\}.$$

- \mathbb{Q} -curves appear when studying solutions to Fermat-type equations. They are in analogy to *Frey curves*, which are curves over \mathbb{Q} induced from (hypothetical) rational solutions to the Fermat equation $x^n + y^n = z^n$ where $n \geq 3$; these are crucial in the proof of Fermat's Last Theorem.
- These curves also have applications in cryptography. For example, they can be used to speed up computations for explicit isogenies between two isogenous supersingular elliptic curves defined over a finite field.
- The elliptic curves in $\mathcal{I}_{\mathbb{Q}}$ are called *rational* \mathbb{Q} -curves.

Here are our new results on $\mathcal{I}_{\mathbb{Q}}$:

Theorem 1 (Bourdon, G., 2025).

Torsion from $\mathcal{I}_{\mathbb{Q}}$ is polynomially bounded. More precisely, for each $\epsilon > 0$, there exists $c_{\epsilon} > 0$ such that for any elliptic curve $E/F \in \mathcal{I}_{\mathbb{Q}}$, one has

$$\#E(F)[\text{tors}] \leq c_{\epsilon} \cdot d^{3+\epsilon}$$

where $d := [F : \mathbb{Q}]$.

- Towards this result, we prove new lower bounds on degrees of fields of definition of points on *modular curves*:

- Let $X_1(n)$ denote the *modular curve* which is a moduli space for elliptic curves $E/\overline{\mathbb{Q}}$ with a point $P \in E(\overline{\mathbb{Q}})$ of order n . Points on $X_1(n)$ have the form $x = [E, P] \in X_1(n)$.

Theorem 2 (Bourdon, G., 2025).

Suppose $n \in \mathbb{Z}^+$ is divisible only by primes $\ell > 37$. Let E/\mathbb{Q} be a non-CM elliptic curve. Then for any $x = [E, P] \in X_1(n)$, one has

$$\deg(x) \geq \frac{1}{24^k} \cdot \frac{1}{2} \cdot n^2 \cdot \prod_{\ell|n} \left(1 - \frac{1}{\ell^2}\right)$$

where k is the number of exceptional primes of E/\mathbb{Q} . *This is what $\deg(X_1(n) \rightarrow X(1))$ is.*

I have also shown that $\mathcal{I}_{\mathbb{Q}}$ is **typically bounded** in torsion.

Theorem 3 (G., 2023).

For each $\epsilon > 0$, there exists a constant $B_\epsilon > 0$ such that the set

$$\{d \in \mathbb{Z}^+ : \exists F/\mathbb{Q} \text{ with } [F : \mathbb{Q}] = d, E/F \in \mathcal{I}_{\mathbb{Q}} \text{ and } \#E(F)[\text{tors}] > B_\epsilon\}$$

has upper density $\leq \epsilon$.

- Towards this, I prove new results on ℓ -adic valuations for degrees of fields of definition of cyclic isogenies.

I am currently extending this work in two ways:

- ① Polynomial bounds on torsion from geometric isogeny classes of higher-dimensional abelian varieties.
 - Unlike studying $\mathcal{I}_{\mathbb{Q}}$, I am doing this “one $\overline{\mathbb{Q}}$ -isogeny class at a time.”
 - Polynomial bounds are closely controlled by the endomorphism algebra of the abelian variety.
- ② Polynomial *and* typical bounds on torsion of \mathbb{Q} -curves in $\mathcal{Q}_{\mathbb{Q}} \setminus \mathcal{I}_{\mathbb{Q}}$.
 - A place to start is to understand *central* \mathbb{Q} -curves $E/\mathbb{Q}(j(E))$. By work of Sairaiji and Yamauchi, we know that $\#E(\mathbb{Q}(j(E)))[\text{tors}]$ only has 3 types of prime divisors, one of which is related to 2-cocycles of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ which are induced from isogenies between E and its Galois conjugates.

Thank you!

References (in order of appearance):

- B. Mazur, *Modular curves and the Eisenstein ideal*, Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 33–186.
- M. A. Kenku and F. Momose, *Torsion points on elliptic curves defined over quadratic fields*, Nagoya Math. J. 109 (1988), 125–149.
- S. Kamienny, *Torsion points on elliptic curves and q -coefficients of modular forms*, Invent. Math. 109 (1992), 221–229.
- S. Kamienny, *Torsion points on elliptic curves over fields of higher degree*, Internat. Math. Res. Notices (1992), 129–133.
- M. Derickx, A. Etropolski, M. van Hoeij, J. Morrow and D. Zureick-Brown, *Sporadic cubic torsion*, Algebra Number Theory 15 (2021), 1837–1864.
- L. Merel, *Bornes pour la torsion des courbes elliptiques sur les corps de nombres*, Invent. Math. 124 (1996), 437–449.
- P. Parent, *Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres*, J. Reine Angew. Math. 506 (1999), 85–116.
- P.L. Clark and P. Pollack, *The truth about torsion in the CM case*, C. R. Math. Acad. Sci. Paris 353 (2015), no. 8, 683–688.
- A. Bourdon, P.L. Clark and P. Pollack, *Anatomy of torsion in the CM case*, Math. Z. 285 (2017), no. 795–820.
- P.L. Clark and P. Pollack, *Pursuing polynomial bounds on torsion*, Israel J. Math 227 (2018), 889–909.
- P.L. Clark, M. Milosevic and P. Pollack, *Typically bounding torsion*, J. Number Theory 192 (2018), 150–167.
- J. Cremona and F. Najman, *\mathbb{Q} -curves over odd degree number fields*, Res. Number Theory 7 (2021), Paper No. 62, 30.
- F. Sairaiji and T. Yamauchi, *On rational torsion points of central \mathbb{Q} -curves*, J. Théor. Nombres Bordeaux 20 (2008), 465–483.