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For a field k , an elliptic curve E/k is a curve in k2 defined by
an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where each ai ∈ k, with a discriminant condition ∆ ̸= 0.

The most remarkable property of an elliptic curve is that the
set E (k) of k-rational points on E is an abelian group:



Figure: The chord and tangent method on an elliptic curve E/R in
Weierstrass form. From Silverman’s “The Arithmetic of Elliptic Curves.”



More can be said about the group structure of the
Mordell-Weil group E (k) when k = F is a number field (finite
degree extension of Q).

Theorem (Mordell-Weil Theorem).

For a number field F and for any elliptic curve E/F , the group
E (F ) is a finitely generated abelian group: there exist points
P1,P2, . . . ,Pk ∈ E (F ) such that for all P ∈ E (F ), one has

P = n1P1 ⊕ n2P2 ⊕ . . .⊕ nkPk

for some n1, n2, . . . , nk ∈ Z.



By the structure theorem for finitely generated abelian groups,
this theorem implies that

E (F ) ∼= Zr ⊕ E (F )[tors]

for some integer r ≥ 0 and some finite group E (F )[tors].

E (F )[tors] is called the torsion subgroup of E over F . It is a
finite abelian group.

What do we know about E (F )[tors] as E/F varies?



Here is a classic result on rational torsion groups due to
Mazur.

Theorem (Mazur, 1977).

Let E/Q be an elliptic curve. Then E (Q)[tors] is isomorphic to
one of the following 15 groups:

Z/NZ N = 1, 2, . . . , 10, 12,

Z/2Z⊕ Z/2NZ N = 1, 2, 3, 4.

In this case, we have #E (Q)[tors] ≤ 16.



There have been extensions to quadratic and cubic number fields, too:

Theorem (Kenku-Momose, 1988; Kamienny, 1992).

Let K be a quadratic number field and let E/K be an elliptic curve. Then E(K)[tors]
is isomorphic to one of the following 26 groups:

Z/NZ N = 1, 2, . . . , 16, 18,

Z/2Z⊕ Z/2NZ N = 1, 2, . . . , 6,

Z/3Z⊕ Z/3NZ N = 1, 2,

Z/4Z⊕ Z/4Z.

∴ #E(K)[tors] ≤ 24 when K/Q is quadratic.

Theorem (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown, 2021).

Let F be a cubic number field and let E/F be an elliptic curve. Then E(F )[tors] is
isomorphic to one of the following 26 groups:

Z/NZ 1, 2, . . . , 16, 18, 20, 21,

Z/2Z⊕ Z/2NZ N = 1, 2, . . . , 7.

∴ #E(F )[tors] ≤ 28 when F/Q is cubic.



In general, E (F )[tors] can be arbitrarily large when [F : Q] is
arbitrarily large.

However, when [F : Q] is bounded, so are torsion group sizes:

Theorem (Merel, 1996).

For each d ∈ Z+, there exists a constant B := B(d) ∈ Z+ so that
for all elliptic curves E/F where [F : Q] = d one has

#E (F )[tors] ≤ B.

Therefore, there is a “strong uniform boundedness” in torsion
groups of elliptic curves over number fields.



Theorem (Merel, 1996).

For each d ∈ Z+, there exists a constant B := B(d) ∈ Z+ so that
for all elliptic curves E/F where [F : Q] = d one has

#E (F )[tors] ≤ B.

Explicitly, Merel gave a bound on p | #E (F )[tors] in terms of
d > 1 (1996):

p | #E (F )[tors] ⇒ p ≤ d3d2
.

Parent later improved this (1999):

pk | #E (F )[tors] ⇒ pk ≤ 129(5d − 1)(3d)6.



Theorem (Merel, 1996).

For each d ∈ Z+, there exists a constant B := B(d) ∈ Z+ so that
for all elliptic curves E/F where [F : Q] = d one has

#E (F )[tors] ≤ B.

Can we sharpen the bounds B?

Sharper bounds are currently not known, but we can do better
once restricting to special families of elliptic curves.

We will start with considering the family of elliptic curves with
complex multiplication (or CM for short), which we denote
by FCM.

CM elliptic curves have endomorphism rings are strictly larger
than Z.



Theorem (Clark and Pollack, 2015).

There exists an absolute, effectively computable constant c ∈ Z+

such that for all number fields F/Q with d := [F : Q] ≥ 3 and for
all CM elliptic curves E/F , one has

#E (F )[tors] ≤ c · d log log d .∗

*Here, log stands for ln.

Thus, for all ϵ > 0, one has for CM elliptic curves E/F that

#E (F )[tors] ≪ϵ d
1+ϵ.

This is an example of a polynomial bound.



Torsion groups of CM elliptic curves also exhibit “Merel-like”
behavior in another way:

Theorem (Bourdon, Clark and Pollack, 2017).

For each ϵ > 0, there exists a constant Bϵ > 0 such that the set

{d ∈ Z+ : ∃F/Q with [F : Q] = d and CM E/F with #E (F )[tors] > Bϵ}

has upper density ≤ ϵ.

In particular, for each 0 < ϵ < 1, there is a bound Bϵ which
bounds torsion groups of CM elliptic curves, over a subset of
degrees in Z+ of upper density ≥ 1− ϵ.

We say here that torsion groups of CM elliptic curves are
typically bounded.



Thus, our two types of torsion bounds on FCM are:
1 Polynomial bounds;
2 Typical bounds.

By the above results, torsion groups of non-CM elliptic curves
are more mysterious.

One place to start studying non-CM torsion is in the family
FQ of elliptic curves E/F with Q-rational j-invariant:

FQ := {E/F : j(E ) ∈ Q}.



Theorem (Clark and Pollack, 2018).

For all ϵ > 0, there exists a constant cϵ > 0 such that for all elliptic
curves E/F with j(E ) ∈ Q, one has

#E (F )[tors] ≤ cϵ · d5/2+ϵ

where d := [F : Q].

Theorem (Clark, Milosevic and Pollack, 2018).

For each ϵ > 0, there exists a constant Bϵ > 0 such that the set

{d ∈ Z+ : ∃F/Q with [F : Q] = d and CM E/F with #E (F )[tors] > Bϵ}

has upper density ≤ ϵ.

Thus, like FCM, the family FQ is both polynomially
bounded and typically bounded in torsion.



Torsion in FQ behaves well since it is intimately connected to
torsion of rational elliptic curves, as well as their Galois
representations, which are relatively well-understood.

Our next family is a generalization of FQ.

For elliptic curves E ,E ′ defined over Q, an isogeny ϕ : E → E ′

defined over Q is called a geometric isogeny.

“Being geometrically isogenous” is an equivalence relation. An
equivalence class here is called a geometric isogeny class.

Unlike a rational isogeny class, a geometric isogeny class is
infinite.



Let us define

IQ := {E/F : E is Q-isogenous to some E ′/Q}.

IQ is the union over all rational geometric isogeny classes
(those which contain at least one rational elliptic curve).

We have FQ ⊊ IQ; in fact, IQ contains elliptic curves with
j-invariants of arbitrarily large degree over Q.



IQ := {E/F : E is Q-isogenous to some E ′/Q}.

Here is some context for the family IQ.
Torsion groups of (non-CM) elliptic curves E/F ∈ IQ behave
very similarly to elliptic curves over Q:

By work of Cremona and Najman, if [F : Q] is a prime ≥ 11,
then E (F )[tors] is one of the 15 abelian groups from Mazur’s
torsion theorem over Q.



FQ := {E/F : j(E ) ∈ Q}.

IQ := {E/F : E is Q-isogenous to some E ′/Q}.

The family IQ is a special subfamily of Q-curves:

FQ ⊊ IQ ⊊ QQ,

where

QQ := {E/F : ∀σ ∈ Gal(Q/F ), E is Q-isogenous to Eσ}.

is the family of Q-curves. We also have QQ ⊋ FCM.



QQ := {E/F : ∀σ ∈ Gal(Q/F ), E is Q-isogenous to Eσ}.

Q-curves appear when studying solutions to Fermat-type
equations. They are in analogy to Frey curves, which are
curves over Q induced from (hypothetical) rational solutions
to the Fermat equation xn + yn = zn where n ≥ 3; these are
crucial in the proof of Fermat’s Last Theorem.

These curves also have applications in cryptography. For
example, they can be used to speed up computations for
explicit isogenies between two isogenous supersingular elliptic
curves defined over a finite field.

The elliptic curves in IQ are called rational Q-curves.



Here are our new results on IQ:

Theorem 1 (Bourdon, G., 2025).

Torsion from IQ is polynomially bounded. More precisely, for
each ϵ > 0, there exists cϵ > 0 such that for any elliptic curve
E/F ∈ IQ, one has

#E (F )[tors] ≤ cϵ · d3+ϵ

where d := [F : Q].

Towards this result, we prove new lower bounds on degrees of
fields of definition of points on modular curves:



Let X1(n) denote the modular curve which is a moduli space
for elliptic curves E/Q with a point P ∈ E (Q) of order n.
Points on X1(n) have the form x = [E ,P] ∈ X1(n).

Theorem 2 (Bourdon, G., 2025).

Suppose n ∈ Z+ is divisible only by primes ℓ > 37. Let E/Q be a
non-CM elliptic curve. Then for any x = [E ,P] ∈ X1(n), one has

deg(x) ≥ 1

24k
·1
2
· n2 ·

∏
ℓ|n

(
1− 1

ℓ2

)

where k is the number of exceptional primes of E/Q. This is what
deg(X1(n) → X (1)) is.



I have also shown that IQ is typically bounded in torsion.

Theorem 3 (G., 2023).

For each ϵ > 0, there exists a constant Bϵ > 0 such that the set

{d ∈ Z+ : ∃F/Q with [F : Q] = d ,E/F ∈ IQ and #E (F )[tors] > Bϵ}

has upper density ≤ ϵ.

Towards this, I prove new results on ℓ-adic valuations for
degrees of fields of definition of cyclic isogenies.



I am currently extending this work in two ways:
1 Polynomial bounds on torsion from geometric isogeny classes

of higher-dimensional abelian varieties.

Unlike studying IQ, I am doing this “one Q-isogeny class at a
time.”
Polynomial bounds are closely controlled by the endomorphism
algebra of the abelian variety.

2 Polynomial and typical bounds on torsion of Q-curves in
QQ ∖ IQ.

A place to start is to understand central Q-curves E/Q(j(E )).
By work of Sairaiji and Yamauchi, we know that
#E (Q(j(E )))[tors] only has 3 types of prime divisors, one of
which is related to 2-cocyles of Gal(Q/Q) which are induced
from isogenies between E and its Galois conjugates.



Thank you!
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