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Abstract

The Chevalley–Warning Theorem is a result on the solution set of a system of polynomial
quations f1, . . . , fr in n variables over a finite field Fq in the low degree case d :=

r
j=1 deg( f j ) < n. In this note we reformulate that result in terms of fibers of the associated

olynomial map and, following Heath-Brown, show that something weaker continues to hold when
= n. This result invites a search for homogeneous degree n polynomials in n variables over Fq

or which the associated polynomial function Fn
q → Fq is not surjective, and we exhibit several

amilies of such polynomials.
c 2021 Published by Elsevier GmbH.

SC 2010: primary 11T06; secondary 11D79
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1. Chevalley–Warning

Let p be a prime number, let a ∈ Z+ be a positive integer, and put q = pa . Let Fq
be “the” (unique, up to isomorphism) finite field of order q . Let Fq [t1, . . . , tn] be the
ring of polynomials in variables t1, . . . , tn with coefficients in Fq : the elements are finite
formal Fq -linear combinations of monomials ta1

1 · · · tan
n . The degree of such a monomial

is a1 + · · · + an , and the degree of a nonzero polynomial is the maximum degree of a
monomial term that appears with nonzero coefficient. There are differing conventions on
the degree of the zero polynomial: here, we define deg 0 = 0, so that the degree zero
polynomials are precisely the elements of Fq .
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Theorem 1.1 (Chevalley–Warning). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be polynomials of
egrees d1, . . . , dr ∈ Z+ and suppose that d :=

∑r
j=1 d j < n. Let

Z = Z ( f1, . . . , fr ) := {x = (x1, . . . , xn) ∈ Fn
q | f1(x) = · · · = fr (x) = 0}

e the solution set of the polynomial system. Then p | #Z.

roof (Ax [6]). If x ∈ Fq , then xq−1
=

{
1 x ̸= 0
0 x = 0

. It follows that taking

χ :=

r∏
j=1

(1 − f q−1
j ) ∈ Fq [t1, . . . , tn],

hen for all x ∈ Fn
q we have χ (x) =

{
1 x ∈ Z
0 x /∈ Z

. So as elements of Fq we have

∑
x∈Fn

q

χ (x) = #Z .

ince Fq has characteristic p, we see that p | #Z holds iff
∑

x∈Fn
q
χ (x) = 0. Moreover

deg χ =

r∑
j=1

deg(1 − f q−1
j ) = (q − 1)

r∑
j=1

d j < (q − 1)n.

e claim that for any polynomial P ∈ Fq [t1, . . . , tn] of degree less than (q − 1)n we
ave

∑
x∈Fn

q
P(x) = 0, which will suffice to complete the proof. To establish the claim,

e first observe that

P ∈ Fq [t1, . . . , tn] ↦→

∑
x∈Fn

q

P(x) ∈ Fq

s Fq -linear, so it is enough to show the result for a monomial ta1
1 · · · tan

n of degree less
han (q − 1)n. We have∑

x∈Fn
q

xa1
1 · · · xan

n = (
∑

x1∈Fq

xa1
1 ) · · · (

∑
xn∈Fq

xan
n ).

f a1 + · · · + an = deg(ta1
1 · · · tan

n ) < (q − 1)n, then we must have ai < q − 1 for some i ,
o it is enough to show that if 0 ≤ ai ≤ q − 2 then we have

∑
xi ∈Fq

xai
i = 0. If ai = 0

hen this sum is q , which is 0 in Fq , so suppose that 1 ≤ ai ≤ q − 2. The group F×
q is

yclic [11, Cor. B.10]; let ζ be a generator. Then∑
xi ∈Fq

xai
i =

q−2∑
k=0

(ζ k)ai =
(ζ ai )q−1

− 1
ζ ai − 1

= 0. □

Theorem 1.1 can be viewed as an estimate on the size of #Z , but it is not a usual
“Archimedean inequality”. Rather it is a “p-adic inequality”: namely, for a nonzero
integer n, let ord (n) denote the largest power of p dividing n. Then Theorem 1.1
p
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gives the p-adic inequality ordp(#Z ) ≥ 1. It is thus natural to ask for stronger p-adic
inequalities, and we will return to address this later on.

We call Theorem 1.1 the “Chevalley-Warning Theorem” in reference to the papers of
Chevalley [10] and Warning [32], published consecutively in the same issue of the same
journal. What Chevalley proved is that under the low degree hypothesis d < n we cannot

ave #Z = 1. This is already significant: if each f j is moreover homogeneous – that is,
every nonzero monomial term has the same total degree – then the system has the trivial
solution 0 = (0, . . . , 0) ∈ Fn

q , so Chevalley’s result asserts the existence of a nontrivial
olution. Specializing further to r = 1, we get that a homogeneous polynomial over Fq

in more variables than its degree has a nontrivial solution, proving a conjecture made by
Dickson [15] and Artin.1

The p-divisibility refinement was contributed by Warning, but this stronger conclusion
comes just from looking more carefully at Chevalley’s proof. See for instance [11, §14.2]
for an exposition of Chevalley’s argument adapted to prove Theorem 1.1. Warning’s real
contribution in [32] was the following result,2 which (almost!) gives a more traditional
Archimedean inequality on #Z .

Theorem 1.2 (Warning II). Under the hypotheses of Theorem 1.1, we have Z = ∅ or
#Z ≥ qn−d .

We said “almost” because Theorem 1.2 allows Z to be empty. So does Theorem 1.1,
as 0 is zero modulo p. This is as it must be, for as soon as d ≥ 2, the set Z can indeed

e empty. If d j ≥ 2 for some 1 ≤ j ≤ r , let f j ∈ Fq [t1] be irreducible; otherwise we
ave d1 = · · · = dr = 1 with r ≥ 2, and we take f1 = t1, f2 = t1 + 1.

Every proof of Theorem 1.1 that we know uses the “Chevalley polynomial”

χ =

r∏
j=1

(1 − f q−1
j ).

hevalley’s original proof exploits the interplay between polynomials and polynomial
unctions and can be seen as a precursor to Alon’s Combinatorial Nullstellensatz [4].
x’s proof (the one we have given) is a thing of wonder that is not of the one-hit variety.
is idea can be used to prove other results of Chevalley–Warning type: see e.g. [7, §4].
Theorem 1.2 is not as well known as the Chevalley–Warning Theorem. We will

ot prove it here, though the idea behind our main result can be traced back to
arning’s proof of Theorem 1.2. A good exposition of this proof can be found in

20, pp. 273–275]. Forrow and Schmitt observed that Theorem 1.2 is a consequence
f a result of Alon–Füredi on polynomials over an arbitrary field. As shown in [13], this
ethod of proof leads to “restricted variable” generalizations of Theorem 1.2. A third

roof of Theorem 1.2 was recently given by Asgarli [5].
In the case when each polynomial f j is homogeneous, we can also look at the

olution locus in projective space Pn−1(Fq ), which is obtained from Fn
q by removing 0 =

0, . . . , 0) and quotienting out by the equivalence relation (x1, . . . , xn) ∼ (λx1, . . . , λxn)
or all λ ∈ F×

q . If P ∈ Fq [t1, . . . , tn] is homogeneous of degree d then for all

1 A field that satisfies this property is called “C1”, so Chevalley proved that finite fields are C1.
2 Warning stated Theorem 1.2 for r = 1 only, but his proof works verbatim in the general case.
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x = (x1, . . . , xn) ∈ Fn
q \ {0} and λ ∈ F×

q , we have P(λx) = λd P(x), and thus whether
P(x) = 0 depends only on the class of x in Pn−1(Fq ). If we denote by PZ the solution
ocus in projective space, then we have

#Z = 1 + (q − 1)#PZ , (1)

o Theorem 1.1 tells us that

#PZ ≡ 1 (mod p).

n the homogeneous case, the low degree condition

d =

r∑
j=1

d j =

r∑
j=1

deg( f j ) < n

s especially natural. Algebraic geometers will recognize that, in the case that the
ssociated projective variety V/Fq is smooth, geometrically integral and of dimension
− 1 − r , it holds precisely when V is Fano: a sufficiently negative multiple of the

anonical bundle embeds V into projective space. If instead of working over Fq our
olynomials had coefficients in C, the compact complex submanifolds of projective space
o obtained would be simply connected with positive sectional curvature.

Still keeping the above “nice” geometric conditions, if in contrast we had d > n then
he associated projective variety V/Fq would be of “general type” and (this is somewhat
tronger) a sufficiently positive multiple of the canonical bundle would embed V into
rojective space. In dimension one over C these varieties are also characterized by being
yperbolic and by having noncommutative fundamental group.

The condition d = n is an interesting boundary case: again keeping the nice geometric
onditions, we get a Calabi–Yau variety, for which the canonical bundle is trivial. In
imension one over C – e.g. when (r, n, d) = (1, 3, 3) – these are elliptic curves:
hey have zero sectional curvature and infinite but commutative fundamental group. In
imension two – e.g. when (r, n, d) = (2, 4, 4) – we get K3 surfaces: simply connected
icci-flat compact complex surfaces (topological 4-manifolds).

These geometric considerations will not be needed later. In fact, it counts among
he charms of these Chevalley–Warning results that they do not require the polynomial
ystem to have any nice geometric properties and that the proofs use no algebraic
eometry whatsoever. However, connections to Fq -points on varieties V/Fq are part of
he reason why mathematicians are interested in these results.

. At the boundary

If d ≥ n, then the conclusion of Theorem 1.1 fails very badly. In fact, for all prime
owers q and positive integers n, r, d1, . . . , dr such that d1 + · · · + dr ≥ n, there are
omogeneous polynomials f1, . . . , fr ∈ Fq [t1, . . . , tn] of degrees d1, . . . , dr such that

Z ( f1, . . . , fr ) = {0}. Theorem 1.2 still holds when d ≥ n but becomes trivial: in this
ase, clearly either Z = ∅ or #Z ≥ 1 ≥ qn−d .

However, we will now reformulate Theorem 1.1 in such a way that something still
olds “on the boundary”, i.e., when d = n. For g ∈ Fq [t1, . . . , tn], let E(g) denote the
nduced function from Fn

q to Fq :

E(g) : x = (x , . . . , x ) ∈ Fn
↦→ g(x) ∈ F .
1 n q q
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Since we have r polynomials f1, . . . , fr , we can build a function

E :=

r∏
j=1

E( f j ) : Fn
q → Fr

q , x ↦→ ( f1(x), . . . , fr (x)).

he fiber of E over 0 ∈ Fr
q is Z = Z ( f1, . . . , fr ), and for any b = (b1, . . . , br ) ∈ Fr

q ,
he fiber of E over b is Z ( f1 − b1, . . . , fr − br ). For all 1 ≤ j ≤ r we have
eg( f j − b j ) = deg( f j ). So here is an equivalent fibered form of Theorem 1.1:

heorem 2.1 (Chevalley–Warning Restated). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be polyno-
ials of degrees d1, . . . , dr ∈ Z+, and suppose that d :=

∑r
j=1 d j < n. Then every fiber

f E : Fn
q → Fr

q , x ↦→ ( f1(x), . . . , fr (x)) has cardinality divisible by p.

Now what happens if d = n? Here is one easy case to build upon: suppose also that
= n and d j = 1 for all j . Since looking at all fibers of E involves translating by all

ossible constants anyway, we may assume that each f j has no constant term, and thus
E : Fn

q → Fn
q is a linear map. Let R be its rank. If R = n then E is invertible, so

ach fiber has cardinality 1. If R < n then W := E−1(0) is an Fq -subspace of dimension
−R ≥ 1. For b ∈ Fr

q , if E−1(b) is empty then it has cardinality zero modulo p; otherwise
here is x ∈ Fb

q such that E(x) = b and E−1(b) = x +W has cardinality #W = qn−R
≡ 0

mod p). Thus we find that the fiber cardinalities need not be 0 modulo p, but they are
ll the same modulo p.

These considerations serve to motivate the following result.

heorem 2.2 (Chevalley–Warning at the Boundary, Preliminary Form). Let f1, . . . , fr ∈

q [t1, . . . , tn] be polynomials of degrees d1, . . . , dr ∈ Z+, and suppose that d :=
r
j=1 d j ≤ n. Let E : Fn

q → Fr
q , x ↦→ ( f1(x), . . . , fr (x)) be the associated evaluation

ap. Then:

(a) For all b, c ∈ Fr
q we have #E−1(b) ≡ #E−1(c) (mod p).

(b) If the common fiber cardinality in part (a) is nonzero modulo p, then E is surjective.

In Theorem 2.2, part (b) follows immediately from part (a): if every fiber has nonzero
ardinality modulo p, then every fiber is nonempty, so E is surjective. The key to the
roof of Theorem 2.2(a) is the following observation of Heath-Brown [17].3

emma 2.3 (Heath-Brown). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be polynomials of degrees
1, . . . , dr ∈ Z+ and suppose that d :=

∑r
j=1 d j ≤ n. For all 1 ≤ j ≤ r , let

h j ∈ Fq [t1, . . . , tn] be such that deg h j < d j . Then we have

#Z ( f1, . . . , fr ) ≡ #Z ( f1 − h1, . . . , fr − hr ) (mod p).

roof. For 1 ≤ j ≤ r , we may uniquely write f j = F j + r j where F j is homogeneous
f degree d j and deg r j < d j : indeed F j is the sum of all the monomial terms of f j of

3 Heath-Brown establishes Lemma 2.3 en route to proving [17, Thm. 1], which is a generalization of a
lemma that Warning used in his proof of Theorem 1.2.
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total degree d j and r j is the sum of all the other monomial terms. We also put

G j := t
d j
n+1 f j

(
t1

tn+1
, . . . ,

tn
tn+1

)
∈ Fq [t1, . . . , tn+1].

n other words, we introduce a new variable tn+1 and multiply each monomial term by
he non-negative power of tn+1 needed to bring the degree of the monomial up to d j .
hus G j is homogeneous of degree d j but in n + 1 variables. Put

Z := {x ∈ Fn
q | f1(x) = · · · = fr (x) = 0},

Z1 := {x ∈ Fn
q | F1(x) = · · · = Fr (x) = 0},

Z2 := {(x, y) = (x1, . . . , xn, y) ∈ Fn+1
q | G1(x, y) = · · · = Gr (x, y) = 0}.

or x ∈ Fn
q , we have x ∈ Z1 iff (x, 0) ∈ Z2. On the other hand, if y ̸= 0 then (x, y) ∈ Z2

ff ( x
y , 1) = ( x1

y , . . . , xn
y , 1) ∈ Z2, so there are precisely q − 1 times as many elements

(x, y) ∈ Z2 with y ̸= 0 as there are elements (x, 1) ∈ Z2. Finally we have (x, 1) ∈ Z2

ff x ∈ Z . This gives

#Z2 = (q − 1)#Z + #Z1. (2)

Theorem 1.1 applies to give p | #Z2. Since p | q , reducing (2) modulo p, we get

#Z ≡ #Z1 (mod p).

In other words, after reduction modulo p, the number of solutions to the system f1 =

· · · = fr = 0 depends only on the highest degree homogeneous parts of the f j ’s, which
do not change if we adjust each f j by a polynomial h j of smaller degree. This establishes
the result. □

The proof of Theorem 2.2(a) follows immediately from Lemma 2.3: indeed it is the
special case of Lemma 2.3 in which each h j has degree 0.

3. A generalization and some related results

Let us look more carefully at the case in which the finite field Fq has composite order:
> p. For motivation we considered the case of a linear map E : Fn

q → Fn
q . Though

we managed not to say so, our analysis showed that all fibers have the same cardinality
modulo q, not just modulo p. Moreover, while Theorem 1.1 gives a congruence modulo
p, Theorem 1.2 gives an inequality involving q. This makes one wonder: in the setting
of Theorem 1.1, must we have #Z ≡ 0 (mod q)?

The answer – yes – was first shown by Ax in 1964 as part of his study of higher
p-adic divisibilities on #Z [6]. Ax’s results are optimal when r = 1. For r ≥ 2 Ax’s
results are not optimal but nevertheless give #Z ≡ 0 (mod q). For r ≥ 2 the optimal
p-adic divisibilities were given by Katz [18].

Theorem 3.1 (Ax–Katz). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be polynomials of degrees
d1 ≥ · · · ≥ dr ≥ 1. Let b ∈ Z+ be such that bd1 + d2 + · · · + dr < n. Then

b
| #Z ( f , . . . , f ).
1 r
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So if
∑r

j=1 d j < n then in Theorem 3.1 we can take b = 1 to get q | #Z . Using this
e see immediately that the conclusion of Lemma 2.3 can4 be strengthened to

#Z ( f1, . . . , fr ) ≡ #Z ( f1 − h1, . . . , fr − hr ) (mod q),

hich in turn gives a strengthening of Theorem 2.2:

heorem 3.2 (Chevalley–Warning at the Boundary). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be
polynomials of degrees d1, . . . , dr ∈ Z+, and suppose that d :=

∑r
j=1 d j ≤ n. Let

E : Fn
q → Fr

q , x ↦→ ( f1(x), . . . , fr (x)) be the evaluation map. Then:

(a) For all b, c ∈ Fr
q we have #E−1(b) ≡ #E−1(c) (mod q).

(b) More generally, we do not change any fiber cardinality modulo q if we replace each
f j by f j + h j with deg h j < deg f j .

(c) If the common modulo q fiber cardinality is nonzero, then E is surjective.

Theorem 3.2 is a generalization of the following 1966 result.

heorem 3.3 (Terjanian [30]). Let f ∈ Fq [t1, . . . , tn] have degree n and suppose that
Z ( f ) = {0}. For all g ∈ Fq [t1, . . . , tn] with deg g < n, there is x ∈ Fn

q such that
f (x) = g(x). In particular f is surjective.

We get Theorem 3.3 by applying Theorem 3.2 (or even Theorem 2.2) with r = 1
to the polynomial f : the hypothesis Z ( f ) = {0} means that, even after adjusting by
a polynomial h of smaller degree, the common fiber cardinality modulo q is 1, so all
fibers of f − h are nonempty. Terjanian’s proof is different: he uses Theorem 1.1 and
the existence of polynomials of degree q in q variables that have exactly one solution.

Theorem 3.2(c) is related to the following result, which we state in “fibered form”.

Theorem 3.4 (Aichinger–Moosbauer [3]). Let f1, . . . , fr ∈ Fq [t1, . . . , tn] be polynomi-
ls of positive degree, and for 1 ≤ j ≤ r , put Y j := E( f j )(Fn

q ). If
r∑

j=1

(#Y j − 1) deg( f j ) < (q − 1)n, (3)

hen every fiber of E : Fn
q → Fr

q , x ↦→ ( f1(x), . . . , fr (x)) has size divisible by p.

roof. The hypotheses are stable under passage from f1, . . . , fr ↦→ f1 −b1, . . . , fr −br

or b1, . . . , br ∈ Fq , so it suffices to show that assuming (3) we have

p | #Z = #{x ∈ Fn
q | f1(x) = · · · = fr (x) = 0}.

f 0 ̸∈ Y j for some j then Z = ∅ and the conclusion certainly holds, so we may assume
hat 0 ∈ Y j for all 1 ≤ j ≤ r . For 1 ≤ j ≤ r , put

C̃ j :=

∏
x∈Y j \{0}

(t − x) ∈ Fq [t], C j :=
1

C̃ j (0)
C̃ j ∈ Fq [t].

4 And was — this is what Heath-Brown proved in [17].
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Thus C j is a univariate polynomial of degree #Y j − 1, and the induced function from Y j

to Fq maps 0 to 1 and everything else to 0. Now put

P :=

r∏
j=1

C j ( f j ) ∈ Fq [t1, . . . , tn].

Then deg P =
∑r

j=1(#Y j −1) deg( f j ) < (q −1)n and E(P) is the characteristic function
of Z . We can now run Ax’s proof with P in place of Chevalley’s polynomial χ to get
he result. □

If we have a polynomial system f1, . . . , fr ∈ Fq [t1, . . . , tn] with d =
∑r

j=1 deg( f j ) =

and a non-surjective evaluation map

E : Fn
q → Fr

q , x ↦→ ( f1(x), . . . , fr (x)),

hen
r∑

j=1

(#Y j − 1) deg( f j ) < (q − 1)
r∑

j=1

deg( f j ) = (q − 1)n,

o Theorem 3.4 applies to give p | #Z . Under the same hypotheses Theorem 3.2 gives
he stronger conclusion q | #Z . On other hand, Theorem 3.4 applies even when d > n
f the Y j ’s are small enough. So neither result encompasses the other.

uestion 3.5. Under the hypotheses of Theorem 3.4, must every fiber have size a
ultiple of q? More generally, is there a strengthening of Theorem 3.1 that takes the

mage cardinalities # f j (Fn
q ) into account?

These results become more interesting if we have a plenitude of examples of systems
f1, . . . , fr with d =

∑r
j=1 deg( f j ) = n and non-surjective evaluation map. We turn next

o a discussion of such examples, which lie at the heart of the paper.

. Examples

If in Theorem 3.2 all the f j ’s are homogeneous, then using (1) relating #Z to #PZ
e get the following reformulation of this case of the result.

orollary 4.1. With notation as in Theorem 3.2, suppose moreover that each polynomial
f j is homogeneous, and let PZ be the solution locus in Pn−1(Fq ). Then at least one of
he following holds:

(i) We have #PZ ≡ 1 (mod q).
(ii) All fibers of E( f ) : Fn

q → Fr
q have a common nonzero cardinality modulo q. In

particular f is surjective.

Let us focus on the case of one homogeneous degree n polynomial f ∈ Fq [t1, . . . , tn].

xample 4.2. For n ∈ Z+, let f (t1, . . . , tn) = t1 · · · tn . Then we have
−1 n n n+1
#Z ( f ) = #E (0) = q − (q − 1) ≡ (−1) (mod q),
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F
t
(

so

#PZ ( f ) =
qn

− (q − 1)n
− 1

q − 1
= 1 + q + · · · + qn−1

− (q − 1)n−1
≡ 1 + (−1)n (mod q).

or every b ∈ F×
q we can choose x1, . . . , xn−1 to be any nonzero elements of Fq and

hen xn is uniquely determined as xn =
b

x1···xn−1
, so #E−1(b) = (q − 1)n−1

≡ (−1)n+1

mod q). So in Corollary 4.1, (ii) holds but (i) does not.

In general we may factor f into a product of irreducible homogeneous polynomials
g1, . . . , gr . Then we have Z ( f ) =

⋃r
i=1 Z (gi ), so Inclusion–Exclusion gives

#Z ( f ) =

∑
i

#Z (gi ) −

∑
i< j

#(Z (gi ) ∩ Z (g j )) + · · · + (−1)r−1#
r⋂

j=1

Z (g j ). (4)

Example 4.3. Suppose L =
∏n

i=1 L i with L i ∈ Fq [t1, . . . , tn] degree 1 homogeneous.

(a) In Example 4.2 we had L i = ti for all 1 ≤ i ≤ n. The corresponding linear
functionals E(t1), . . . , E(tn) are the dual basis of the canonical basis e1, . . . , en of
Fn

q , so they are linearly independent in the dual space (Fn
q )∨ = HomFq (Fn

q ,Fq ).
Now suppose that L1, . . . , Ln are any n linearly independent linear forms, and let
f = L1 · · · Ln . We can compute #Z ( f ) using (4): the linear independence implies
that the intersection of any i of the hyperplanes Z (L i ) is a linear subspace of
dimension n − i , so we get

#Z ( f ) =

n∑
i=1

(−1)i+1
(

n
i

)
qn−i

= qn
− (q − 1)n.

As above we have #PZ ( f ) ̸≡ 1 (mod q) and E( f ) : Fn
q → Fq is surjective.

(b) At the other extreme lies the case of a fixed hyperplane H ⊂ Fn
q such that

Z (L i ) = H for all 1 ≤ i ≤ n. Then we have #Z ( f ) = #H = qn−1, so

#PZ ( f ) =
qn−1

− 1
q − 1

= 1 + q + · · · + qn−2
≡ 1 (mod q).

The function E : Fq → Fq , x ↦→ xn is surjective iff gcd(n, q − 1) = 1.
Thus if gcd(n, q − 1) = 1 then both (i) and (ii) of Corollary 4.1 hold, while if
gcd(n, q − 1) > 1 then only (i) holds.

(c) When n = 3 there are two other linear algebraic configurations:

(i) Precisely two of the hyperplanes Hi = Z (L i ) coincide — say H1 = H2. Then
Z ( f ) = Z (L1L2L3) = Z (L1L3) where L1 and L3 are linearly independent
linear forms in three variables, so (4) gives

#Z ( f ) = 2q2
− q, #PZ ( f ) = 2q + 1 ≡ 1 (mod q).

In this case E( f ) is surjective. More generally, let L1, . . . , Lm ∈ Fq [t1, . . . , tn]
be nonzero linear forms, viewed as elements of (Fn

q )∨. If for some 1 ≤ j ≤ m
we have that L j does not lie in the span of L1, . . . , L j−1, L j+1, . . . , Lm , then
after a linear change of variables we have L1, . . . , Lm−1 ∈ Fq [t1, . . . , tn−1]
and Lm = tn . If also

⋃m−1
i=1 Z (L i ) ⊊ Fn

q – this condition being always satisfied
if m − 1 < q + 1 [12] – then E(L · · · L ) : Fn

→ F is surjective.
1 m q q
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(ii) The three hyperplanes H1, H2, H3 are distinct, but their intersection is a line.
Then (4) gives

#Z ( f ) = 3q2
− 3q + q = 3q2

− 2q, #PZ ( f ) = 3q + 1 ≡ 1 (mod q).

After a linear change of variables we reduce to the case L1 = t1, L2 = t2,
L3 = at1 + bt2 with a, b ∈ F×

q . When q = 2 we must have a = b = 1 and
the map E( f ) is identically 0. (This reflects the fact that F2

2 can be covered
by 3 lines.) When q = 3, after replacing (t1, t2) by (−t1, −t2) if necessary, we
have that f is either f1 = t1t2(t1 + t2) or f2 = t1t2(t1 − t2), and both E( f1)
and E( f2) are surjective.

uestion 4.4. Let L1, . . . , Lm ∈ Fq [t1, . . . , tn] be linear forms. Is there a general
riterion for the surjectivity of E(L1 · · · Lm) : Fn

q → Fq?

xample 4.5. Suppose d = 2, so

f (t1, t2) = At2
1 + Bt1t2 + Ct2

2 ∈ Fq [t1, t2]

s a binary quadratic form over Fq .
• If A = C = 0, then B ̸= 0 and f = Bt1t2, so Example 4.3(a) applies to give

PZ ( f ) = 2, #Z ( f ) = 2q − 1, and every nonzero fiber has size q − 1.
Otherwise A ̸= 0 or C ̸= 0; without loss of generality, suppose A ̸= 0. Then there

re no solutions [X1 : X2] in P1(Fq ) with X2 = 0, so PZ is naturally in bijection with
olutions to the univariate quadratic equation Q(t) = At2

+ Bt + C = 0.
• Suppose Q has distinct roots in Fq . Then #PZ ( f ) = 2, so #Z ( f ) = 2q − 1. Using

orollary 4.1 one finds that every nonzero fiber has size q − 1.
• Suppose Q has no roots in Fq . Then #PZ ( f ) = 0, so #Z ( f ) = 1 and all fibers have

ize 1 modulo q and E is surjective. For all b ∈ F×
q , the equation

C : At2
1 + Bt1t2 + Ct2

2 − bt2
3 = 0

s a smooth conic curve in the projective plane. It is known that all such curves have
+ 1 points.5 None of these points have X3 = 0, so we get q + 1 solutions to

At2
1 + Bt1t2 + Ct2

2 = b.
• If Q has exactly one root in Fq , then #PZ ( f ) = 1 and #Z ( f ) = q . In fact we are

n the situation of Example 4.3(b), so E( f ) is surjective iff p = 2.

Recall that if Fq ⊂ F is a field extension and x ∈ F is such that xq
= x , then we

ust have x ∈ Fq . This holds, for instance, because the polynomial tq
− t ∈ F[t] has

egree q and has every element of Fq as a root, hence has no other roots. Moreover, if
x ∈ F is such that xq−1

= 1, then xq
= x , so x ∈ Fq .

5 We sketch one argument for this: by Theorem 1.1 there is at least one point P0 ∈ C(Fq ) ⊂ P2(Fq ).
hrough the point P0 there are q + 1 lines. One of these lines is the tangent line to C at P0 so intersects

he curve C at P0 alone. Every other line intersects C at one other point. All points of C(Fq ) arise in this
ay.
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Example 4.6. We consider here the case where d = 3 and f (t1, t2, t3) is a smooth,
eometrically irreducible plane cubic. Geometrically irreducible means that f does not
actor into polynomials of smaller degree (even) over an algebraic closure Fq of Fq .
mooth means that (even) over the algebraic closure Fq the partial derivatives ∂ f

∂t1
, ∂ f

∂t2
,

∂ f
∂t3

do not simultaneously vanish at any point (x0, y0, z0) ̸= (0, 0, 0).
Then f defines a nice curve C/Fq of genus one, and (for instance) by the Hasse–Weil

ounds [29, Thm. 5.2.3] it follows that #C(Fq ) := #PZ ( f ) ≥ 1.
By Corollary 4.1, the map E( f ) : F3

q → Fq is surjective unless #C(Fq ) ≡ 1 (mod q).
hen does this happen? For any nice genus one curve C/Fq , the Hasse–Weil bounds give

#C(Fq ) = q + 1 − tC , |tC | ≤ 2
√

q. (5)

So we need q | tC and |tC | ≤ 2
√

q . This places us within the class of supersingular
elliptic curves.6

When q ≥ 5, an integer tC satisfies q | tC and |tC | ≤ 2
√

q if and only if tC = 0. By
a result of Waterhouse [33, Thm. 4.1], for a finite field Fq = Fpa there is a nice genus
one curve C/Fq with tC = 0 iff (a is odd) or (a is even and p ̸≡ 1 (mod 4)). Using
Waterhouse’s results or direct computation, one determines all #C(Fq ) with #C(Fq ) ≡ 1
mod q) that arise as we range over all nice curves C/Fq of genus 1: when q = 2 we
ave #C(F2) ∈ {1, 3, 5}; when q = 3 we have #C(F3) ∈ {1, 4, 7}; when q = 4 we have
C(F4) ∈ {1, 5, 9}.

Consider f = t3
1 + t3

2 + t3
3 over F4. For all x ∈ F×

4 we have x3
= 1, while 03

= 0,
o E( f ) = F2 ⊊ F4. For (x, y, z) ∈ F3

4 we have x3
+ y3

+ z3
= 0 iff either one or

ll three of x, y, z are zero, so #Z = 28 and #PZ = 9. Thus f defines a supersingular
lliptic curve over F4 that meets the Hasse–Weil bound by having 4+1+2

√
4 F4-rational

points. There is up to F4-isomorphism a unique elliptic curve C/F4 with 9 rational points
[21, p. 46]. This is a very special elliptic curve: it has j-invariant zero and automorphism
group SL2(Z/3Z), the largest automorphism group of any elliptic curve over any field
[26, Thm. III.10.1].

Question 4.7. Let f ∈ Fq [t1, t2, t3] be a smooth plane cubic curve. Is it true that
E( f ) : F3

q → Fq is surjective unless q = 4 and #PZ ( f ) = 9? (See the Appendix for
ome calculations in support of an affirmative answer.)

xample 4.8. Let Fq1 ⊊ Fq2 be a proper extension of finite fields, and put a :=
q2−1
q1−1 .

Let g ∈ Fq1 [t1, . . . , tn] be homogeneous of degree d ∈ Z+, and put

f = g(ta
1 , . . . , ta

n ) ∈ Fq1 [t1, . . . , tn] ⊂ Fq2 [t1, . . . , tn],

so f is homogeneous of degree ad . For all x ∈ F×
q2

we have

(xa)q1−1
= xq2−1

= 1, so xa
∈ Fq1 ,

and it follows that E( f )(Fn
q2

) ⊆ Fq1 ⊊ Fq2 .
If we now take n = ad , then Corollary 4.1 implies that all fibers of E( f ) have size

divisible by q . Example 4.6 is the case of this construction with the smallest possible
parameter values: q1 = 2, q2 = 4 and d = 1, so n = a = 3.

6 An elliptic curve C is supersingular iff p | t .
/Fq C
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On the other hand, so long as d < n then Theorem 3.4 applies to show that all fibers
of E( f ) have size divisible by p.

Example 4.9. Let

f = t1t3
2 + t3

1 t2 + t3t3
4 + t3

3 t4 ∈ F9[t1, t2, t3, t4].

hen E( f ) : F4
9 → F9 has image F3 ⊊ F9. The polynomial f defines a smooth quartic

K3 surface, and we have #PZ ( f ) = 280; this quantity is 1 mod 9, as promised by
Corollary 4.1, and it is not 1 mod 27.

One of us learned of this example from a talk given by U. Whitcher. It lies in the
parametrized family L2L2 of K3 surfaces of [16, Table (5.1.1)].

Example 4.10. Let b ∈ Z+, and suppose that q ≡ 1 (mod b). Put

Tb := t1tq
2 · · · tqb−1

b + tq
1 tq2

2 · · · tqb−1

b−1 tb + · · · + tqb−1

1 t2 · · · tqb−2

b ∈ Fqb [t1, . . . , tb].

hen Tb is homogeneous of degree 1 + q + · · · + qb−1
≡ 0 (mod b), so put

r :=
1 + q + · · · + qb−1

b
.

Since we have zqb
= z for all z ∈ Fqb , for all x1, . . . , xb ∈ Fqb we have

Tb(x1, . . . , xb)q
= xq

1 xq2

2 · · · xqb−1

b−1 xqb

b + xq2

1 · · · xqb

b−1xq
b + . . . + xqb

1 xq
2 · · · xqb−1

b

= xq
1 xq2

2 · · · xqb−1

b−1 xb + xq2

1 · · · xb−1xq
b + · · · + x1xq

2 · · · xqb−1

b = Tb(x1, . . . , xb).
hus Tb(x1, . . . , xb) ∈ Fq and we have

E(Tb(Fb
qb )) ⊂ Fq .

ow for 1 ≤ i ≤ r and 1 ≤ j ≤ b, let X i, j be independent indeterminates, and put

fb,q := Tb(X1,1, . . . , X1,b) + · · · + Tb(Xr,1, . . . , Xr,b) ∈ Fqb [X1,1, . . . , Xr,b].

hen fb,q is homogeneous of degree n := 1 + q + · · · + qb−1 in rb = n variables and

E( fb,q )(Fn
qb ) ⊂ Fq ,

o by Corollary 4.1 we have PZ ( fb,q ) ≡ 1 (mod q).
The polynomial fb,q defines a smooth Calabi–Yau hypersurface over Fqb of dimension

− 2. The case of b = 2, q = 3 is Example 4.9. In the case of b = 2, q = 5 we have
PZ ( f2,5) = 2, 035, 026; this quantity is 1 (mod 25), as promised by Corollary 4.1, and
t is not 1 (mod 125).

. Life beyond the boundary

.1. A more general problem

For d ∈ N, let Pd be the Fq -subspace of Fq [t1, . . . , tn]r consisting of r -tuples
f1, . . . , fr ) with

∑r
j=1 deg( f j ) ≤ d . We can go “beyond the boundary” – i.e., generalize

he question asked in Section 2 – as follows.
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Question 5.1. Let d ∈ N. What are the restrictions on fiber cardinalities of the map
E( f1, . . . , fr ) : Fn

q → Fr
q associated to any ( f1, . . . , fr ) ∈ Pd?

Our previous results are not quite included in this regime, because above we required
ach f j to have positive degree, and now (to get an Fq -vector space, in particular) we
llow them to have degree 0. But this is no problem: suppose that we have f j ∈ Fq for

some 1 ≤ j ≤ r : without loss of generality we may suppose j = 1. Then each fiber
E−1(y) is of the form Fq × X ′ for some X ′

⊂ Fn−1
q , so #E−1(y) = q · #X ′. It follows

hat Theorems 1.1 and 3.2 hold even if we allow the polynomials f j to be constant.7

t also implies that Theorem 1.2 holds verbatim if we allow constant polynomials, as
oes Theorem 3.1 with the proviso that if all the polynomials are constant, the correct
onclusion is that qn

| #Z ( f1, . . . , fr ).
Thus we can view the results of Chevalley, Warning, Ax and Katz as addressing

uestion 5.1 when d < n and Theorem 3.2 as addressing Question 5.1 when d = n.
an anything be said if d > n?

.2. Two relevant results

In a word: yes. The following result predates even the work of Chevalley and Warning.
s usual, we have recast it in fibered form.

heorem 5.2 (Ore [24]). For f ∈ Fq [t1, . . . , tn], suppose that d := deg( f ) ≤ q − 1.
Then for all c ∈ Fq we have either E−1(c) = Fn

q or #E−1(c) ≤ dqn−1.

A new aspect of Ore’s Theorem is that the “low degree” condition on f is in terms
f the size of the finite field, not in terms of the number of variables.

Theorem 5.2 is a special case of a result due to DeMillo–Lipton [14], Zippel [35] and
chwartz [25]: if F is any field, A ⊂ F is a finite subset, and f ∈ F[t1, . . . , tn] is a
onzero polynomial of positive degree d , then

#Z A( f ) = #{x = (x1, . . . , xn) ∈ An
| f (x) = 0} ≤ d(#A)n−1.

ikipedia gives an elegant proof using basic probability theory [1]. See [8, §4] for more
nformation on the results of Schwartz, Zippel and DeMillo–Lipton.

Here is a much more recent result that also addresses Question 5.1.

heorem 5.3 (Kosters [19]). Let f1, . . . , fn ∈ Fq [t1, . . . , tn] be polynomials, not all
onstant, and put d := max j deg( f j ). Let E = E( f1, . . . , fn) : Fn

q → Fn
q be the

associated polynomial function, and put

V f := E(Fn
q ).

hen we have

#V f = qn or #V f ≤ qn
−

n(q − 1)
d

.

7 Indeed, it shows that in any polynomial system with a constant polynomial, all fiber cardinalities are 0
modulo q without any degree condition whatsoever.
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Since

d = max deg( f j ) ≤

n∑
j=1

deg( f j ) = d,

heorem 5.3 implies that when r = n, if ( f1, . . . , fn) ∈ Pd and we put

e :=

⌈
n(q − 1)

d

⌉
,

then either every fiber of E = E( f1, . . . , fn) has size 1 or there are at least e empty
fibers, a nontrivial constraint iff d < n(q − 1).

Theorem 5.3 is an improvement of an earlier result of Mullen–Wan–Wang [23], who
showed that with the same hypotheses we have

#V f = qn or #V f ≤ qn
− min

(
n(q − 1)

d
, q

)
.

It is interesting to compare and contrast Theorems 5.2 and 5.3. Each result grows stronger
when q is large compared to the degree. Theorem 5.2 applies to a single polynomial,
while Theorem 5.3 applies to a system of r = n polynomials. Theorem 5.3 shows
that small degree implies that the fiber cardinalities must be either precisely equally
distributed or rather unequally distributed, while Theorem 5.2 shows that small degree
implies that the fibers must be either maximally unequally distributed or rather equally
distributed.

These results illustrate that Question 5.1 can have a nontrivial answer even when
d > n, though they leave it largely open.

5.3. The true boundary

We claim that Question 5.1 has a nontrivial answer whenever d < rn(q − 1) and a
rivial answer when d ≥ rn(q − 1). To see why, let x ∈ Fn

q and put

δx :=

n∏
i=1

(
1 − (ti − xi )q−1) .

hen deg δx = (q − 1)n and the associated function E(δx ) maps x to 1 and every other
lement of Fn

q to 0. The functions E(δx ) therefore form a basis for the Fq -vector space
f all functions from Fn

q to Fq , and it follows that every function E : Fn
q → Fq is

btained by evaluating a polynomial of degree at most (q −1)n.8 So as we range over all
olynomials f1, . . . , fr with

∑r
j=1 deg( f j ) ≤ rn(q − 1), the associated evaluation maps

E( f ) : Fn
q → Fr

q give all functions between these sets, so there is nothing to say about
ber cardinalities of such polynomials maps beyond what is true of fiber cardinalities of
ll functions Fn

q → Fr
q : namely, to each b ∈ Fr

q we have a non-negative integer

zb = #E−1(b)

ith the sole constraint that
∑

b∈Fr
q

zb = qn .

8 Such considerations form the beginning of Chevalley’s proof of Theorem 1.1.
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On the other hand, if d < rn(q − 1), then for at least one 1 ≤ j ≤ r we must
have deg( f j ) < n(q − 1). In this case, as we saw in the proof of Theorem 1.1, we have

x∈Fn
q

f j (x) = 0, so that the j th component of
∑

x∈Fn
q

E(x) is 0. But∑
x∈Fn

q

E(x) =

∑
b∈Fr

q

zbb,

so we get a constraint the zb’s. There are maps that do not satisfy this constraint: indeed,
for any y ∈ Fr

q , for 1 ≤ j ≤ r let E j = y jδ0 and put E = (E1, . . . , Er ) : Fn
q → Fr

q .
hen ∑

b∈Fr
q

zbb =

∑
x∈Fn

q

E(x) = y.

.4. Beyond the degree

There are results of Chevalley–Warning type that take into account more refined
nformation on the polynomial system f1, . . . , fr than just the degrees of the polynomials.

Here is one, again stated in fibered form.

Theorem 5.4 (Morlaye [22]). Let n, m1, . . . , mn ∈ Z+. For 1 ≤ i ≤ n, put di :=

cd(mi , q − 1). Let a1, . . . , an, b ∈ Fq and let

f = a1tm1
1 + · · · + antmn

n .

f
n∑

i=1

1
di

> 1,

then every fiber of E( f ) has size divisible by p.

Morlaye’s results have been sharpened by Wan [31] who showed in particular that
nder the hypotheses of Theorem 5.4, every fiber of E( f ) has size divisible by q. A

further generalization is given in [7, Cor. 1.17].
A simple example in which Theorem 5.4 applies and Theorem 1.1 does not is

f (t1, t2, t3) = t2
1 + t3

2 + t5
3 . In this case the polynomial has degree 5 but is “sparser”

than a general such polynomial. This can be formalized as follows: rather than just the
degree of each polynomial f j one may try to take into account its support, i.e., the
subset of indices i = (i1, . . . , in) ∈ Nn such that the monomial t i1

1 · · · t in
n appears in f j

ith nonzero coefficient. Adolphson–Sperber give an important result along these lines
n terms of the Newton polyhedron of f j (which is defined in terms of its support) [2],
nd the literature contains further such results as well.

Works of Smith [27], Zan–Cao [34] and Smith–Wan [28] strengthen the work of
ullen–Wan–Wang in a different direction from that of Kosters, namely by taking the

upports of the polynomials f , . . . , f ∈ F [t , . . . , t ] into account.
1 n q 1 n
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Appendix. Further study of homogeneous ternary cubic forms

In this appendix we take a closer look at the evaluation map on a homogeneous cubic
f ∈ Fq [t1, t2, t3].

Singular and reducible cubics

In Example 4.6 we restricted to the case in which f is smooth and geometrically
irreducible, or otherwise put, defines a nice curve of genus one. What are the possible
values of #PZ for a plane cubic that is singular and/or geometrically reducible? We will
now write down all possibilities. We ask the reader with a prior familiarity with elliptic
curves to pause and think of what the classification should look like – each of the authors
has experience with elliptic curves, and the classification is longer than we would have
predicted!

Example A.1 (Geometrically Irreducible Singular Cubics). Let f (t1, t2, t3) ∈ Fq [t] be a
omogeneous cubic that is geometrically irreducible but singular. An irreducible plane
ubic has at most one singular point P = [x0 : y0 : z0] in the projective plane, and over
perfect field like Fq , if the cubic is singular there is a unique Fq -rational singular point

9, pp. 22–24]. At least one of x0, y0, z0 must be nonzero; without loss of generality,
uppose z0 ̸= 0; then (x0, y0) is a singular point of the affine plane curve f (t1, t2, 1). The
hange of variables f ↦→ g(t1, t2) := f (t1 − x0, t2 − y0) brings the unique singular point
o (0, 0). Then we may write

g(t1, t2) = g1(t1, t2) + g2(t1, t2) + g3(t1, t2),

ith gi homogeneous of degree i . To say that the point (0, 0) is singular is to say that
dg
dt1

and dg
dt2

both vanish at (0, 0), which means that g1 = 0. If also g2 = 0, then g = g3 is
eometrically reducible, which implies that f is geometrically reducible, a contradiction.
o we have

2 2
g2(t1, t2) = At1 + Bt1t2 + Ct2 , A, B, C ∈ Fq are not all zero.
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We say that f has a

(a) split node if g2 factors into linearly independent linear forms L1, L2 over Fq .
(b) nonsplit node if g2 is irreducible over Fq but factors into linearly independent linear

forms L1, L2 over an algebraic extension of Fq (equivalently, over Fq2 ).
(c) cusp if g2 = aL2 for a linear form L and a ∈ F×

q .

We claim that

#PZ =

⎧⎪⎨⎪⎩
q f has a split node
q + 2 f has a nonsplit node
q + 1 f has a cusp.

Thus Corollary 4.1 implies that E( f ) : F3
q → Fq is surjective in the nodal cases.

These are well-known results,9 but the interested reader can get a good sense of
them as follows: consider a homogeneous degree d polynomial f (t1, t2, t3) over an
lgebraically closed field k. Then for any linear form L ∈ k[t1, t2, t3], the locus in the
rojective plane P2

F of f = L = 0 has size d provided that the intersection points are
ounted with suitable intersection multiplicities. Each point P = [x0 : y0 : z0] ∈ P2

k itself
as a multiplicity m P ∈ Z+, which is 1 iff the point P is nonsingular. More precisely, if
s above we dehomogenize and move P to (0, 0) in the affine plane to get a polynomial

g(t1, t2) with g(0, 0) = 0, then m P is the least i such that the degree i homogeneous part
gi of g is nonzero, and the tangent lines at P are the linear factors of gi . Moreover, for
ny line L through P , the intersection multiplicity of L with f at P is at least m P , with
quality iff L is not a tangent line at P . So:

(a) A split node P has two tangent lines L1 and L2, and each is defined over Fq . Since
m P = 2, if L is any nontangent line passing through P , its intersection with P
contributes m P = 2 to the multiplicity, whereas deg f = 3, leaving exactly one
more k-rational intersection point. If L is a tangent line, then its intersection with
P contributes at least 3 to the multiplicity, so L intersects f at no other point (even
over the algebraic closure). For every point Q of P2(Fq ) different from P , there is
a unique Fq -rational line joining Q to P , and the set of Fq -rational lines through
any P ∈ P2(Fq ) corresponds to the hyperplanes in a 3-dimensional Fq -vector space
that contain a given line, of which there are q + 1. Therefore the 2 tangent lines at
P contribute no more points to PZ , while each of the q +1−2 = q −1 nontangent
lines contributes a unique point, giving

#PZ = 1 + (q − 1) = q.

(b) In the case of a nonsplit node, the tangent lines are not Fq -rational, which means
that each of the q + 1 Fq -rational lines through P intersects a unique Fq -rational
point on the projective curve. This shows that

#PZ = 1 + (q + 1) = q + 2.

9 Unfortunately we have only been able to find them in the literature in the special case of a singular
Weierstrass cubic, which is why we give a detailed sketch here.
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(c) In the case of a cusp, there is a unique tangent line, which again intersects P at
no other point. Each of the q other Fq -rational lines through P intersects a unique
Fq -rational point on the projective curve. This shows that

#PZ = q + 1.

Example A.2 (Geometrically Reducible Cubics). Now suppose that f (t1, t2, t3) ∈ Fq [t]
s a geometrically reducible cubic. There are several cases:

(a) We have f = L1L2L3 is a product of linear forms. This was analyzed in
Example 4.3(c). Our analysis was complete except for the case in which the
corresponding hyperplanes are distinct and intersect in a line.

(b) We have F = L1 · C , with L1 a linear form and C an irreducible quadratic that
factors over Fq2 into L2L3.
In this case we have #PZ (C) = 1: we have two lines that are interchanged by
the action of Galois, with a unique Fq -rational intersection point, and we have
#PZ (L) = q + 1. If the line intersects the conic in its unique Fq -rational point,
then #PZ = q + 1. Otherwise the line intersects the conic in two points, neither of
which is Fq -rational, so #PZ = q + 2.

(c) We have f = L · C , with L a linear form and C a quadratic that is geometrically
irreducible. In this case #PZ is equal to the number of points on the line, q + 1,
plus the number of points on the conic, q + 1, minus the number of points I
on the intersection, which can be 0, 1 or 2. We have I = 0 iff there are two
intersection points in Fq but neither is defined over Fq ; in the middle case, the line
is tangent to the conic, so there is one Fq -rational intersection point; in the last
case there are two Fq -rational intersection points. Thus in the tangency case we
have #PZ = 2q + 1 ≡ 1 (mod q).

(d) We have that f is irreducible over Fq but factors over Fq3 as a product of linear
forms. In this case over Fq we have three lines arranged in a triangle and cyclically
permuted by the action of Galois, so #PZ = 0.

omputational results

Two of the authors undertook a computer search for instances of homogeneous degree
polynomials f ∈ Fq [t1, . . . , tn] with nonsurjective evaluation map E : Fn

q → Fq . By
ar the most interesting results were attained with n = 3: though in retrospect we should
ave found the Fermat cubic t3

1 + t3
2 + t3

3 over F4 by pure thought, in fact we first did so
ia computer search.

q = 2. Through a complete search of plane cubics over F2 we find that there are
xactly 7 with non-surjective evaluation map. Each such plane cubic factors as a product
f three linear forms over F2, with the intersection of the corresponding hyperplanes a
ine, i.e., is the case of Example A.2(c)(ii).

q ∈ {3, 5, 8, 9, 11}. Through complete searches, we find that there are no plane cubics
ith non-surjective evaluation map over Fq for q ∈ {3, 5, 8, 9, 11}.
q = 4. Fix a ∈ F4 \ F2, so a2

+ a + 1 = 0. Through a complete search of plane
ubics over F we found 840 smooth, geometrically irreducible cubics with non-surjective
4
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evaluation map. They are all isomorphic, as elliptic curves, to the Fermat elliptic curve
t3
1 +t3

2 +t3
3 = 0 of Example 4.6. We also find 2583 reducible cubics f with non-surjective

evaluation map, having either 5 or 13 points projectively over F4. The following cases
occur:

(a) The cubic f factors over F4 as a product of linear polynomials L i with correspond-
ing hyperplanes Hi , and

(i) the Hi are all equal (the case of Example 4.3(b)), for example

f = X3
+ aX2 Z + a2 X Z2

+ Z3
= (X + aZ )3.

(ii) the hyperplanes Hi are distinct with intersection a line (the case of Exam-
ple 4.3(c)(ii)), for example

f = X3
+ X2Y + X2 Z + XY 2

+ X Z2

= X (X + aY + aZ )(X + a2Y + a2 Z ).

(b) The cubic f factors over F4 as the product of a linear and a conic to which it is
tangent, with the conic factoring over F16 as a product of linear forms (one case of
Example A.2(b)). For example:

f = aY 3
+ a2 Z3

+ aX2Y + X2 Z + a2 XY 2
+ X Z2

+ aY Z2

= a2(aY + Z )(aX2
+ a2 XY + aY 2

+ aX Z + Y Z + Z2).

The only possibility for factorization that is not determined by Corollary 4.1 to
ecessarily have surjective evaluation map, and does not occur over F4, is the product
f a linear polynomial and a geometrically irreducible conic to which it is tangent. We
ave not witnessed this factorization type having non-surjective evaluation map over Fq

or any q.
q = 7. Through a complete search of plane cubics over F7 we find

(a) 19 494 which have non-surjective evaluation map with 22 points projectively over
F7. Each of these factors as a product of three linear forms over F7, with the mutual
intersection of the corresponding hyperplanes a line (the case of Example 4.3(c)(ii)),
and

(b) 342 which have non-surjective evaluation map with 8 points projectively over F7.
These consist of the cubes of linear factors over F7 (Example 4.3(b)).

eferences

[1] https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma.
[2] A. Adolphson, S. Sperber, P-adic estimates for exponential sums and the theorem of Chevalley-Warning,

Ann. Sci. École Norm. Sup. 20 (4) (1987) 545–556.
[3] E. Aichinger, J. Moosbauer, Chevalley warning type results on abelian groups, J. Algebra 569 (2021)

30–66.
[4] N. Alon, Combinatorial Nullstellensatz, Recent trends in combinatorics, Mátraháza, 1995. Combin.

Probab. Comput. 8 (1999) 7–29.
[5] S. Asgarli, A new proof of Warning’s second theorem, Amer. Math. Monthly 125 (2018) 549–553.

[6] J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964) 255–261.

https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz--Zippel_lemma
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb2
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb2
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb2
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb3
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb3
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb3
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb4
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb4
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb4
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb4
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb5
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb6


P.L. Clark, T. Genao and F. Saia / Expo. Math. 39 (2021) 604–623 623
[7] I. Baoulina, A. Bishnoi, P.L. Clark, A generalization of the theorems of Chevalley-Warning and Ax-Katz
via polynomial substitutions, Proc. Amer. Math. Soc. 147 (2019) 4107–4122.

[8] A. Bishnoi, P.L. Clark, A. Potukuchi, J.R. Schmitt, On zeros of a polynomial in a finite grid, Combin.
Probab. Comput. 27 (2018) 310–333.

[9] J.W.S. Cassels, Lectures on Elliptic Curves, in: London Mathematical Society Student Texts, 24,
Cambridge University Press, Cambridge, 1991.

[10] C. Chevalley, Démonstration d’une hypothèse de M. Artin, Abh. Math. Semin. Univ. Hambg. 11 (1935)
73–75.

[11] P.L. Clark, Number Theory: A Contemporary Introduction. http://alpha.math.uga.edu/pete/4400FULL.
pdf.

[12] P.L. Clark, Covering numbers in linear algebra, Amer. Math. Monthly 119 (2012) 65–67.
[13] P.L. Clark, A. Forrow, J.R. Schmitt, Warning’s second theorem with restricted variables, Combinatorica

37 (2017) 397–417.
[14] R.A. DeMillo, R. Lipton, A probabilistic remark on algebraic program testing, Inform. Process. Lett.

7 (1978) 193–195.
[15] L.E. Dickson, On the representation of numbers by modular forms, Bull. Amer. Math. Soc. 15 (7)

(1909) 338–347.
[16] C.F. Doran, T.L. Kelly, A. Salerno, S. Sperber, J. Voight, U. Whitcher, Zeta functions of alternate

mirror Calabi-Yau families, Israel J. Math. 228 (2018) 665–705.
[17] D.R. Heath-Brown, On Chevalley-Warning theorems. (Russian. Russian summary), Uspekhi Mat. Nauk

66 (2(398)) (2011) 223–232 translation in, Russian Math. Surveys 66 (2) (2011) 427–436.
[18] N.M. Katz, On a theorem of ax, Amer. J. Math. 93 (1971) 485–499.
[19] M. Kosters, Polynomial maps on vector spaces over a finite field, Finite Fields Appl. 31 (2015) 1–7.
[20] R. Lidl, H. Niederreiter, Finite fields. With a foreword by P. M. Cohn, in: Encyclopedia of Mathematics

and Its Applications, Vol. 20, second ed., Cambridge University Press, Cambridge, 1997.
[21] A. Menezes, Elliptic curve public key cryptosystems. With a foreword by neal koblitz, in: Commu-

nications and Information Theory, in: The Kluwer International Series in Engineering and Computer
Science, 234, Kluwer Academic Publishers, Boston, MA, 1993.

[22] B. Morlaye, Équations diagonales non homogènes sur un corps fini, C. R. Acad. Sci. Paris Sér. A-B
272 (1971) A1545–A1548.

[23] G.L. Mullen, D. Wan, Q. Wang, Value sets of polynomial maps over finite fields, Q. J. Math. 64
(2013) 1191–1196.

[24] Ö. Ore, Über höhere Kongruenzen, Norsk Mat. Forenings Skrifter Ser. I (7) (1922) 15.
[25] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput.

Mach. 27 (4) (1980) 701–717.
[26] J.H. Silverman, The arithmetic of elliptic curves, in: Graduate Texts in Mathematics, Vol. 106, second

ed., Springer, Dordrecht, 2009.
[27] L. Smith, Polytope bounds on multivariate value sets, Finite Fields Appl. 28 (2014) 132–139.
[28] L. Smith, D. Wan, A refinement of multivariate value set bounds, Finite Fields Appl. 38 (2016) 13–26.
[29] H. Stichtenoth, Algebraic function fields and codes, in: Graduate Texts in Mathematics, Vol. 254,

second ed., Springer-Verlag, Berlin, 2009.
[30] G. Terjanian, Sur les corps finis, C. R. Acad. Sci. Paris Sér. A-B 262 (1966) A167–A169.
[31] D.Q. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc. 103 (1988)

1049–1052.
[32] E. Warning, Bemerkung zur vorstehenden arbeit von herrn chevalley, Abh. Math. Sem. Hamburg 11

(1935) 76–83.
[33] W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 2 (4) (1969) 521–560.
[34] H. Zan, W. Cao, Powers of polynomials and bounds of value sets, J. Number Theory 143 (2014)

286–292.
[35] R. Zippel, An explicit separation of relativised random polynomial time and relativised deterministic

polynomial time, Inform. Process. Lett. 33 (1979) 207–212.

http://refhub.elsevier.com/S0723-0869(21)00020-7/sb7
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb7
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb7
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb8
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb8
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb8
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb9
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb9
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb9
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb10
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb10
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb10
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://alpha.math.uga.edu/pete/4400FULL.pdf
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb12
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb13
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb13
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb13
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb14
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb14
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb14
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb15
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb15
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb15
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb16
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb16
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb16
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb17
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb17
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb17
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb17
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb18
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb19
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb20
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb20
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb20
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb21
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb21
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb21
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb21
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb21
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb22
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb22
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb22
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb23
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb23
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb23
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb24
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb25
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb25
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb25
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb26
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb26
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb26
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb27
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb28
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb29
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb29
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb29
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb30
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb31
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb31
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb31
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb32
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb32
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb32
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb33
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb34
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb34
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb34
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb35
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb35
http://refhub.elsevier.com/S0723-0869(21)00020-7/sb35

	Chevalley–Warning at the boundary
	Chevalley–Warning
	At the boundary
	A generalization and some related results
	Examples
	Life beyond the boundary
	A more general problem
	Two relevant results
	The true boundary
	Beyond the degree

	Declaration of competing interest
	Acknowledgments
	Appendix. Further Study of Homogeneous Ternary Cubic Forms
	Singular and Reducible Cubics
	Computational Results

	References


