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Abstract

The Chevalley—Warning Theorem is a result on the solution set of a system of polynomial
equations fi,..., f in n variables over a finite field F; in the low degree case d =

;-:1 deg(fj) < n. In this note we reformulate that result in terms of fibers of the associated
polynomial map and, following Heath-Brown, show that something weaker continues to hold when
d = n. This result invites a search for homogeneous degree n polynomials in n variables over Fy
for which the associated polynomial function IFZ — [y is not surjective, and we exhibit several
families of such polynomials.
© 2021 Published by Elsevier GmbH.
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1. Chevalley—Warning

Let p be a prime number, let a € Z* be a positive integer, and put ¢ = p“. Let F,
be “the” (unique, up to isomorphism) finite field of order g. Let F,[#, ..., 1] be the
ring of polynomials in variables ¢, ..., t, with coefficients in IF,: the elements are finite
formal FF,-linear combinations of monomials 7, - - - 291, The degree of such a monomial
is a; + - -- + a,, and the degree of a nonzero polynomial is the maximum degree of a
monomial term that appears with nonzero coefficient. There are differing conventions on
the degree of the zero polynomial: here, we define deg0 = 0, so that the degree zero
polynomials are precisely the elements of IF,.
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Theorem 1.1 (Chevalley-Warning). Let fi, ..., fr € Fylti, ..., t,] be polynomials of
degrees dy, ...,d, € Z" and suppose that d = Z;:l dj < n. Let

Z=Z(fl,...,f,)::{x:(xl,...,xn)GIFZ|f1(x)=-~-=f,(x)=0}

be the solution set of the polynomial system. Then p | #Z.

1 x#0

. It follows that taking
0 x=0

Proof (Ax [6]). If x € F,, then x?~! = {

x =[]0 =" eFyln. ... 0

J=1

1 €eZ
then for all x € F” we have x(x) = * . So as elements of IF, we have
1 0 x¢Z
Z x(x)=#Z.
xelFy

Since I, has characteristic p, we see that p | #Z holds iff er]F;; x(x) = 0. Moreover

degy =Y deg(l— f{)=(g— 1> d; <(q—Dn.
j=1 j=1
We claim that for any polynomial P € F,[t,...,1,] of degree less than (g — 1)n we
have erw P(x) = 0, which will suffice to complete the proof. To establish the claim,
we first observe that

PeFlt,....t21 > Y Px)eF,

n
xely

is IF,-linear, so it is enough to show the result for a monomial 7, - - - 9" of degree less
than (¢ — 1)n. We have

fo]--w,‘,‘”:(z x;")...(z xdm),

xe]F’,} x1€lfy xn€lfy

Ifay+---+a, = deg(tf1 - ti) < (g — 1)n, then we must have a; < g — 1 for some i,
so it is enough to show that if 0 < @; < g — 2 then we have inqu x"=0.1fag; =0
then this sum is ¢, which is 0 in Fy, so suppose that 1 < a; < g — 2. The group F7 is
cyclic [11, Cor. B.10]; let ¢ be a generator. Then

X; (g)“t:%:()' 0
> Z ;

X G]Fq

Theorem 1.1 can be viewed as an estimate on the size of #Z, but it is not a usual
“Archimedean inequality”. Rather it is a “p-adic inequality”: namely, for a nonzero
integer n, let ord,(n) denote the largest power of p dividing n. Then Theorem 1.1
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gives the p-adic inequality ord,(#Z) > 1. It is thus natural to ask for stronger p-adic
inequalities, and we will return to address this later on.

We call Theorem 1.1 the “Chevalley-Warning Theorem” in reference to the papers of
Chevalley [10] and Warning [32], published consecutively in the same issue of the same
journal. What Chevalley proved is that under the low degree hypothesis d < n we cannot
have #Z = 1. This is already significant: if each f; is moreover homogeneous — that is,
every nonzero monomial term has the same total degree — then the system has the trivial
solution 0 = (0,...,0) € IF’;, so Chevalley’s result asserts the existence of a nontrivial
solution. Specializing further to » = 1, we get that a homogeneous polynomial over F,
in more variables than its degree has a nontrivial solution, proving a conjecture made by
Dickson [15] and Artin.'

The p-divisibility refinement was contributed by Warning, but this stronger conclusion
comes just from looking more carefully at Chevalley’s proof. See for instance [11, §14.2]
for an exposition of Chevalley’s argument adapted to prove Theorem 1.1. Warning’s real
contribution in [32] was the following result,” which (almost!) gives a more traditional
Archimedean inequality on #Z.

Theorem 1.2 (Warning II). Under the hypotheses of Theorem 1.1, we have Z = & or
#7 > q”’d.

We said “almost” because Theorem 1.2 allows Z to be empty. So does Theorem 1.1,
as 0 is zero modulo p. This is as it must be, for as soon as d > 2, the set Z can indeed
be empty. If d; > 2 for some 1 < j < r, let f; € Fy[t;] be irreducible; otherwise we
have d; =---=d, =1 withr > 2, and we take f; =#, o =1 + 1.

Every proof of Theorem 1.1 that we know uses the “Chevalley polynomial”

x=[Ta-r™.
j=1

Chevalley’s original proof exploits the interplay between polynomials and polynomial
functions and can be seen as a precursor to Alon’s Combinatorial Nullstellensatz [4].
Ax’s proof (the one we have given) is a thing of wonder that is not of the one-hit variety.
His idea can be used to prove other results of Chevalley—Warning type: see e.g. [7, §4].

Theorem 1.2 is not as well known as the Chevalley—Warning Theorem. We will
not prove it here, though the idea behind our main result can be traced back to
Warning’s proof of Theorem 1.2. A good exposition of this proof can be found in
[20, pp. 273-275]. Forrow and Schmitt observed that Theorem 1.2 is a consequence
of a result of Alon-Fiiredi on polynomials over an arbitrary field. As shown in [13], this
method of proof leads to “restricted variable” generalizations of Theorem 1.2. A third
proof of Theorem 1.2 was recently given by Asgarli [5].

In the case when each polynomial f; is homogeneous, we can also look at the
solution locus in projective space P"~!(IF,), which is obtained from [F; by removing 0 =
(0, ..., 0) and quotienting out by the equivalence relation (xy, ..., x,) ~ (Axy, ..., Axy,)
for all A € F;. It P € Fy[ti,...,t,] is homogeneous of degree d then for all

I A field that satisfies this property is called “C;”, so Chevalley proved that finite fields are Cj.
2 Warning stated Theorem 1.2 for r = 1 only, but his proof works verbatim in the general case.
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X =(x1,...,x,) € IFZ \ {0} and A € qu, we have P(Ax) = A?P(x), and thus whether
P(x) = 0 depends only on the class of x in P"~!(F,). If we denote by PZ the solution
locus in projective space, then we have

#Z =1+ (q — 1#PZ, (D
so Theorem 1.1 tells us that
#PZ =1 (mod p).

In the homogeneous case, the low degree condition

d=Y d; =Y deg(f) <n
j=1 j=1

is especially natural. Algebraic geometers will recognize that, in the case that the
associated projective variety Vg, is smooth, geometrically integral and of dimension
n — 1 — r, it holds precisely when V is Fano: a sufficiently negative multiple of the
canonical bundle embeds V into projective space. If instead of working over F, our
polynomials had coefficients in C, the compact complex submanifolds of projective space
so obtained would be simply connected with positive sectional curvature.

Still keeping the above “nice” geometric conditions, if in contrast we had d > n then
the associated projective variety V/g, would be of “general type” and (this is somewhat
stronger) a sufficiently positive multiple of the canonical bundle would embed V into
projective space. In dimension one over C these varieties are also characterized by being
hyperbolic and by having noncommutative fundamental group.

The condition d = n is an interesting boundary case: again keeping the nice geometric
conditions, we get a Calabi—Yau variety, for which the canonical bundle is trivial. In
dimension one over C — e.g. when (r,n,d) = (1,3,3) — these are elliptic curves:
they have zero sectional curvature and infinite but commutative fundamental group. In
dimension two — e.g. when (r, n,d) = (2,4, 4) — we get K3 surfaces: simply connected
Ricci-flat compact complex surfaces (topological 4-manifolds).

These geometric considerations will not be needed later. In fact, it counts among
the charms of these Chevalley—Warning results that they do not require the polynomial
system to have any nice geometric properties and that the proofs use no algebraic
geometry whatsoever. However, connections to F,-points on varieties V), are part of
the reason why mathematicians are interested in these results.

2. At the boundary

If d > n, then the conclusion of Theorem 1.1 fails very badly. In fact, for all prime
powers g and positive integers n,r, di,...,d, such that d; + --- 4+ d, > n, there are
homogeneous polynomials fi,..., fr € F,lt;,...,1,] of degrees d,...,d, such that
Z(f1,..., fr) = {0}. Theorem 1.2 still holds when d > n but becomes trivial: in this
case, clearly either Z = @ or #Z > 1 > q"’d.

However, we will now reformulate Theorem 1.1 in such a way that something still
holds “on the boundary”, i.e., when d = n. For g € F,[t1,...,1,], let E(g) denote the
induced function from IFZ to Fy:

E(g):x=(x1,...,x,,)€FZ+—>g(x)€Fq.
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Since we have r polynomials fi, ..., f,, we can build a function

E=[[E():Fl>TF. x> (A@)..... £(x).
j=1
The fiber of E over 0 € IE‘{I is Z = Z(f1,..., fy), and for any b = (by,...,b,) € F/,
the fiber of E over b is Z(f; — by,..., f, — b,). For all 1 < j < r we have
deg(f; — bj) = deg(f;). So here is an equivalent fibered form of Theorem 1.1:

Theorem 2.1 (Chevalley-Warning Restated). Let fi, ..., f, € F,lt1, ..., t,] be polyno-

mials of degrees di, .. .,d, € 7", and suppose that d = ijl d; < n. Then every fiber
of E:Fy — F,, x = (fi(x),..., fr(x)) has cardinality divisible by p.

Now what happens if d = n? Here is one easy case to build upon: suppose also that
r =n and d; = 1 for all j. Since looking at all fibers of E involves translating by all
possible constants anyway, we may assume that each f; has no constant term, and thus
E : IF; — IF‘;’ is a linear map. Let R be its rank. If R = n then E is invertible, so
each fiber has cardinality 1. If R < n then W := E~'(0) is an IF,-subspace of dimension
n—R > 1.ForbeF, if E ~1(b) is empty then it has cardinality zero modulo p; otherwise
there is x € IFZ such that E(x) = b and E~'(b) = x+ W has cardinality #W = ¢" R =
(mod p). Thus we find that the fiber cardinalities need not be 0 modulo p, but they are
all the same modulo p.

These considerations serve to motivate the following result.

Theorem 2.2 (Chevalley—Warning at the Boundary, Preliminary Form). Let f1, ..., f, €
Fylti,....t,] be polynomials of degrees di,...,d. € Z*, and suppose that d =
Z;Zl di <n. Let E : IF; — ]F;, x = (fi(x), ..., fr(x)) be the associated evaluation
map. Then:

(a) Forall b, c € F(r] we have #E~1(b) = #E~'(¢) (mod p).
(b) If the common fiber cardinality in part (a) is nonzero modulo p, then E is surjective.
In Theorem 2.2, part (b) follows immediately from part (a): if every fiber has nonzero

cardinality modulo p, then every fiber is nonempty, so E is surjective. The key to the
proof of Theorem 2.2(a) is the following observation of Heath-Brown [17].2

Lemma 2.3 (Heath-Brown). Let fi, ..., f, € F,lti,...,t,] be polynomials of degrees
d,...,d. € Z* and suppose that d = Z;zldj < n Foral 1 < j < r, let
hj e Fylt1, ..., 1] be such that degh; < d;. Then we have

#Z(f1, .. ) =#Z(fi — i, ..., fr —hy) (mod p).

Proof. For 1 < j <r, we may uniquely write f; = F; +r; where F; is homogeneous
of degree d; and degr; < d;: indeed F; is the sum of all the monomial terms of f; of

3 Heath-Brown establishes Lemma 2.3 en route to proving [17, Thm. 1], which is a generalization of a
lemma that Warning used in his proof of Theorem 1.2.
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total degree d; and r; is the sum of all the other monomial terms. We also put
4
Gj=1,4.1; <
In other words, we introduce a new variable #,;; and multiply each monomial term by

the non-negative power of 7,4 needed to bring the degree of the monomial up to d;.
Thus G; is homogeneous of degree d; but in n + 1 variables. Put

I t,

>€Fq[t1,...,tn+1].

tn-‘rl tn+1

Z={xeF! | fi)=--= f,(x)=0},

Zy={x eF) | Fi(x) == F(x) =0},

Zy={(, ) =1 X, ) €FT [ Gix, y) = -+ = G(x, y) =0}
For x € ]FZ, we have x € Z; iff (x, 0) € Z,. On the other hand, if y 7~ 0 then (x, y) € Z,
iff ();‘, 1) = (%‘, ..., 1) € Z,, so there are precisely ¢ — 1 times as many elements

(x,y) € Z, with y # 0 as there are elements (x, 1) € Z,. Finally we have (x, 1) € Z;
iff x € Z. This gives

#Z,=(q — DHZ +#Z,. 2)
Theorem 1.1 applies to give p | #Z,. Since p | g, reducing (2) modulo p, we get
#Z =#Z, (mod p).

In other words, after reduction modulo p, the number of solutions to the system f; =
.-+ = f, = 0 depends only on the highest degree homogeneous parts of the f;’s, which
do not change if we adjust each f; by a polynomial /; of smaller degree. This establishes
the result. [

The proof of Theorem 2.2(a) follows immediately from Lemma 2.3: indeed it is the
special case of Lemma 2.3 in which each h; has degree 0.

3. A generalization and some related results

Let us look more carefully at the case in which the finite field IF, has composite order:
g > p. For motivation we considered the case of a linear map E : F; — F7. Though
we managed not to say so, our analysis showed that all fibers have the same cardinality
modulo ¢, not just modulo p. Moreover, while Theorem 1.1 gives a congruence modulo
p, Theorem 1.2 gives an inequality involving g. This makes one wonder: in the setting
of Theorem 1.1, must we have #Z = 0 (mod ¢)?

The answer — yes — was first shown by Ax in 1964 as part of his study of higher
p-adic divisibilities on #Z [6]. Ax’s results are optimal when r = 1. For r > 2 AX’s
results are not optimal but nevertheless give #Z = 0 (mod ¢g). For r > 2 the optimal
p-adic divisibilities were given by Katz [18].

Theorem 3.1 (Ax—Katz). Let fi,..., fr € Fylti,...,t.] be polynomials of degrees
d > - >d. > 1. Let b € Z' be such that bdy +d, + --- + d. < n. Then

a1 #Z(fr . ).
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So if }7;_, d; < n then in Theorem 3.1 we can take b = 1 to get ¢ | #Z. Using this
we see immediately that the conclusion of Lemma 2.3 can® be strengthened to

#Z(f1, ... [ =#Z(fi —hy, ..., fr —hy)  (mod g),

which in turn gives a strengthening of Theorem 2.2:

Theorem 3.2 (Chevalley—Warning at the Boundary). Let fi, ..., f, € Fylt1,..., 1] be
polynomials of degrees d,,...,d. € 7%, and suppose that d = Z;’:l di < n. Let
E FZ — ]F;, x = (fi(x), ..., fy(x)) be the evaluation map. Then:

(a) For all b, c € IF; we have #E~'(b) = #E~'(c) (mod gq).

(b) More generally, we do not change any fiber cardinality modulo q if we replace each
fi by fj +h; with degh; < deg f;.

(¢) If the common modulo q fiber cardinality is nonzero, then E is surjective.

Theorem 3.2 is a generalization of the following 1966 result.

Theorem 3.3 (Terjanian [30]). Let f € F,lt, ..., t,] have degree n and suppose that
Z(f) = {0}. For all g € F,lty,...,t,] with degg < n, there is x € IFZ such that
f(x) = g(x). In particular f is surjective.

We get Theorem 3.3 by applying Theorem 3.2 (or even Theorem 2.2) with r = 1
to the polynomial f: the hypothesis Z(f) = {0} means that, even after adjusting by
a polynomial & of smaller degree, the common fiber cardinality modulo g is 1, so all
fibers of f — h are nonempty. Terjanian’s proof is different: he uses Theorem 1.1 and
the existence of polynomials of degree g in g variables that have exactly one solution.

Theorem 3.2(c) is related to the following result, which we state in “fibered form”.

Theorem 3.4 (Aichinger—-Moosbauer [3]). Let fi, ..., fr € F,lt1, ..., t,] be polynomi-
als of positive degree, and for 1 < j <r, put Y; := E(f;)(Fp). If

r

Y Y, — Ddeg(f;) < (g — n, 3)
j=I
then every fiber of E : Fy — Fy, x — (fi(x), ..., f(x)) has size divisible by p.

Proof. The hypotheses are stable under passage from fi,..., f, — fi—by,..., fr —Db,
for by, ..., b, € Fy, so it suffices to show that assuming (3) we have

pIH#Z=#x eFl| fix) == f,(x) =0}.
If O ¢ Y; for some j then Z = & and the conclusion certainly holds, so we may assume
that 0 e Y; forall 1 < j <r.Forl<j <r,put

~ 1 -
Ci= [] t¢-x el C;:==—C; F,ltl.
xeY;\{0} C;0)

4 And was — this is what Heath-Brown proved in [17].
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Thus C; is a univariate polynomial of degree #Y; — 1, and the induced function from Y;
to F, maps O to 1 and everything else to 0. Now put

P=[]Ci(f) eFyltr, ... 1.
j=1
Then deg P = Z;Zl(#Y_i —1)deg(f;) < (g —Dn and E(P) is the characteristic function
of Z. We can now run Ax’s proof with P in place of Chevalley’s polynomial x to get
the result. [J

If we have a polynomial system fi, ..., f, € F,l#1, ..., t,] withd = Z;:l deg(f;) =
n and a non-surjective evaluation map
E : FZ — ]ng X = (fl(x)’ R fr(x))v

then

D @Y — Ddeg(f)) < (g — 1)) _deg(f;) = (g — Dn,
j=1 j=1
so Theorem 3.4 applies to give p | #Z. Under the same hypotheses Theorem 3.2 gives

the stronger conclusion ¢g | #Z. On other hand, Theorem 3.4 applies even when d > n
if the Y;’s are small enough. So neither result encompasses the other.

Question 3.5.  Under the hypotheses of Theorem 3.4, must every fiber have size a
multiple of q? More generally, is there a strengthening of Theorem 3.1 that takes the
image cardinalities # f;(F}) into account?

These results become more interesting if we have a plenitude of examples of systems
fi, ..., fr withd = Z;:l deg(f;) = n and non-surjective evaluation map. We turn next
to a discussion of such examples, which lie at the heart of the paper.

4. Examples

If in Theorem 3.2 all the f;’s are homogeneous, then using (1) relating #Z to #PZ
we get the following reformulation of this case of the result.

Corollary 4.1. With notation as in Theorem 3.2, suppose moreover that each polynomial
fi is homogeneous, and let PZ be the solution locus in ]P’”’I(IFq). Then at least one of
the following holds:

(i) We have #PZ =1 (mod q).
(it) All fibers of E(f) : Fy — F, have a common nonzero cardinality modulo q. In
particular f is surjective.

Let us focus on the case of one homogeneous degree n polynomial f € F,[f, ..., t,].

Example 4.2. Forn € Z*, let f(t1,...,t,) =1t ---t,. Then we have
#Z(f)=#E'0)=¢" — (@ —1)"=(=D"""  (mod g),
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)
n __ — =1
#PZ(f) = % =l4+qg+-+q¢"'—@-1""=14+(=1)" (modq).
For every b € ]qu we can choose xi,...,x,-1 to be any nonzero elements of F, and
then x, is uniquely determined as x, = b so #E7N(b) = (g — 1) = (—1)"H!

(mod ¢). So in Corollary 4.1, (ii) holds but (i) does not.
In general we may factor f into a product of irreducible homogeneous polynomials
g1, ..., & Then we have Z(f) = J;_; Z(g), so Inclusion-Exclusion gives

HZ(f) =D #Z(g) — Y _MZ(g) N Z(g)) + -+ (=1 "#(") Z(g)). “)

i<j j=1

Example 4.3. Suppose L = ]_[:.’:1 L; with L; e F,[t, ..., 1,] degree 1 homogeneous.

(a) In Example 4.2 we had L; = t; for all 1 < i < n. The corresponding linear
functionals E(ty), ..., E(t,) are the dual basis of the canonical basis ey, ..., e, of
[F7, so they are linearly independent in the dual space (F’;)V = Homy, (F}, F,).
Now suppose that Ly, ..., L, are any n linearly independent linear forms, and let
f=L;---L,. We can compute #Z( f) using (4): the linear independence implies
that the intersection of any i of the hyperplanes Z(L;) is a linear subspace of
dimension n — i, so we get

_n_i-Hn n—i _ _n __ 1\
#Z(f)_,;( 1) (l.)q =q"—(q— 1)

As above we have #PZ(f) # 1 (mod ¢) and E(f): IFZ — IF, is surjective.
(b) At the other extreme lies the case of a fixed hyperplane H C [y such that
Z(L;) = H for all 1 <i < n. Then we have #Z(f) = #H = ¢"~', so

n—1

q" " —1
-1
The function £ : F, — F,, x — x" is surjective iff ged(n,q — 1) = 1.
Thus if ged(n,qg — 1) = 1 then both (i) and (ii) of Corollary 4.1 hold, while if
gcd(n, g — 1) > 1 then only (i) holds.

(c) When n = 3 there are two other linear algebraic configurations:

#PZ(f) = —l4g+-+¢"?=1 (modg).

(i) Precisely two of the hyperplanes H; = Z(L;) coincide — say H; = H,. Then
Z(f) = Z(L1LyL3) = Z(L L3) where L and L3 are linearly independent
linear forms in three variables, so (4) gives

#Z(f)=2q" —q, #PZ(f)=2q+1=1 (mod q).

In this case E(f) is surjective. More generally, let Ly, ..., L,, € F [z, ..., 2,]
be nonzero linear forms, viewed as elements of (Fg)v. Ifforsome 1 < j <m
we have that L; does not lie in the span of Ly, ..., L, Lj4y, ..., Ly, then
after a linear change of variables we have Ly, ..., L, € Fylt;,..., t,—1]
and L, =t,. If also Ul’.':ll Z(L;) ¢ I} — this condition being always satisfied
ifm—1<qg+1[12] -then E(L;---Ly): F; — F, is surjective.
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(ii) The three hyperplanes H,, H,, H; are distinct, but their intersection is a line.
Then (4) gives

#Z(f)=3¢>—3g+q =3¢>—2q, #PZ(f)=3q¢+1=1 (mod q).

After a linear change of variables we reduce to the case L; = t1, Ly = 1,
L3 = aty + bt, with a, b € F;. When ¢ = 2 we must have a = b = 1 and
the map E(f) is identically 0. (This reflects the fact that IF% can be covered
by 3 lines.) When g = 3, after replacing (¢, ;) by (—t;, —t») if necessary, we
have that f is either f| = t15(¢t; + 1) or f, = t1t,(t; — t2), and both E(f})
and E(f,) are surjective.

Question 4.4. Let Ly,...,L, € F,lt;,...,t,] be linear forms. Is there a general
criterion for the surjectivity of E(Ly---Ly) : Fj — F,?

Example 4.5. Suppose d = 2, so
fti, ) = At} + Bt + Cty € F [y, 2]

is a binary quadratic form over F,.

eIf A=C =0, then B # 0 and f = Btt;, so Example 4.3(a) applies to give
#PZ(f) =2, #Z(f) = 2g — 1, and every nonzero fiber has size g — 1.

Otherwise A # 0 or C # 0; without loss of generality, suppose A # 0. Then there
are no solutions [X; : X»] in IP’I(IFq) with X, = 0, so PZ is naturally in bijection with
solutions to the univariate quadratic equation Q(t) = At> + Bt + C = 0.

e Suppose Q has distinct roots in F,. Then #PZ(f) = 2, so #Z(f) = 2q — 1. Using
Corollary 4.1 one finds that every nonzero fiber has size g — 1.

e Suppose Q has no roots in ;. Then #PZ(f) = 0, so #Z(f) = 1 and all fibers have
size 1 modulo ¢ and E is surjective. For all b € F, the equation

C: A + Bty + Ct; —bt? =0

is a smooth conic curve in the projective plane. It is known that all such curves have
g + 1 points.> None of these points have X3 = 0, so we get ¢ + 1 solutions to
At} + Bt + Ct} = b.

o If O has exactly one root in Fy, then #PZ(f) = 1 and #Z(f) = ¢. In fact we are
in the situation of Example 4.3(b), so E(f) is surjective iff p = 2.

Recall that if F, C F is a field extension and x € F is such that x¢ = x, then we
must have x € F,. This holds, for instance, because the polynomial 1Y — ¢ € F[t] has
degree g and has every element of I, as a root, hence has no other roots. Moreover, if
x € F is such that x9~! =1, then x¥ = x, so x € F,.

5 We sketch one argument for this: by Theorem 1.1 there is at least one point Py € C(F,) C IP’Z(IFq).
Through the point Py there are ¢ + 1 lines. One of these lines is the tangent line to C at Py so intersects
the curve C at Py alone. Every other line intersects C at one other point. All points of C(FF,) arise in this
way.
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Example 4.6. 'We consider here the case where d = 3 and f(¢, 12, t3) is a smooth,
geometrically irreducible plane cubic. Geometrically irreducible means that f does not
factor into polynomials of smaller degree (even) over an algebraic closure IFT[ of F,.
Smooth means that (even) over the algebraic closure E the partial derivatives g—i, 372,
% do not simultaneously vanish at any point (xo, Yo, z0) 7 (0, 0, 0).
~Then f defines a nice curve Cp, of genus one, and (for instance) by the Hasse-Weil
bounds [29, Thm. 5.2.3] it follows that #C(IF,) := #PZ(f) > 1.
By Corollary 4.1, the map E(f) : IFZ — IF, is surjective unless #C(FF,) =1 (mod q).
When does this happen? For any nice genus one curve C/,, the Hasse~Weil bounds give

#C(Fy) =q +1—1c, ltc] <2/q. )

So we need g | t¢ and [t¢| < 2,/q. This places us within the class of supersingular
elliptic curves.’®

When g > 5, an integer #¢ satisfies ¢ | #c and |f¢| < 2,/q if and only if tc = 0. By
a result of Waterhouse [33, Thm. 4.1], for a finite field F, = IF« there is a nice genus
one curve Cjp, with 7c = 0 iff (a is odd) or (a is even and p # 1 (mod 4)). Using
Waterhouse’s results or direct computation, one determines all #C(IF,) with #C(IF,) = 1
(mod ¢) that arise as we range over all nice curves Crr, of genus 1: when ¢ = 2 we
have #C(F,) € {1, 3, 5}; when g = 3 we have #C(IF3) € {1, 4, 7}; when g = 4 we have
#C(Ty) € {1,5,9}.

Consider f = t13 + tg’ + t33 over [F4. For all x € ]FZ we have x> = 1, while 0° = 0,
so E(f) = F, C F4. For (x,y,z2) € Fi we have x* + y® + 73 = 0 iff either one or
all three of x, y, z are zero, so #Z = 28 and #PZ = 9. Thus f defines a supersingular
elliptic curve over [, that meets the Hasse—Weil bound by having 4+ 1 +2+/4 F,-rational
points. There is up to [F4-isomorphism a unique elliptic curve C/r, with 9 rational points
[21, p. 46]. This is a very special elliptic curve: it has j-invariant zero and automorphism
group SL,(Z/3Z), the largest automorphism group of any elliptic curve over any field
[26, Thm. II.10.1].

Question 4.7. Let f € F,[ti, t, 3] be a smooth plane cubic curve. Is it true that
E(f) : IFS — ¥, is surjective unless g = 4 and #PZ(f) = 9? (See the Appendix for
some calculations in support of an affirmative answetr.)

Example 4.8. Let IF,, C F,, be a proper extension of finite fields, and put a := ZT—:{.
Let g € F,,[11, ..., t,] be homogeneous of degree d € Z*, and put

f=g@l,....t0)eFylt,....t,] CF,lt, ..., 1],
so f is homogeneous of degree ad. For all x € F we have
(xa)m*l = x42*1 — 1’ so x¢ e Fqla

and it follows that E(f)(]FZZ) CF, CF,.

If we now take n = ad, then Corollary 4.1 implies that all fibers of E(f) have size
divisible by g. Example 4.6 is the case of this construction with the smallest possible
parameter values: g =2, qp =4 andd =1,son=a =3.

% An elliptic curve Cyp, is supersingular iff p | 7c.
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On the other hand, so long as d < n then Theorem 3.4 applies to show that all fibers
of E(f) have size divisible by p.

Example 4.9. Let
f=ut 4160+ 61; + 51 € Folty, 1, 13, 14].

Then E(f) : F§ — Fy has image F3 C Fo. The polynomial f defines a smooth quartic
K3 surface, and we have #PZ(f) = 280; this quantity is 1 mod 9, as promised by
Corollary 4.1, and it is not 1 mod 27.

One of us learned of this example from a talk given by U. Whitcher. It lies in the
parametrized family L,L, of K3 surfaces of [16, Table (5.1.1)].

Example 4.10. Let b € Z*, and suppose that ¢ = 1 (mod b). Put

b1 2 b—1 b—1 2

Ty:=nty---t, +it] tl 4+t net]  €Fpln, ... n)
Then 7, is homogeneous of degree 1 + ¢ + --- 4+ ¢®~! = 0 (mod b), so put

o l+g+--+q""!

b
. b
Since we have z¢9 = z for allzeIE‘qb,for all Xl,...,Xbqub we have
2 b—1 b 2 b b b—1
q _ 49.9° . .4 q ¢ .4’ q @ g 4
Typ(x1, ..., xp)? = X[ x, Xp_; X, + x| Xy X, + ...+ X)X, X,
2 b—1 2 1
9.9 q q q q q
=X Xy Xy Xb+X1 ~-~xb,1xb+~-~+x1x2-~-xb :Tb(xl,...,xb).
Thus Tp(x1, ..., xp) € F, and we have

E(T,(E},)) C Fy.
Now for 1 <i <rand 1 < j <b, let X;; be independent indeterminates, and put
fog =T X1, Xip) + o+ DXty oo Xop) € Fpp[ X110, -0y Xl
Then f;,, is homogeneous of degree n ;== 14+ ¢ + -+ ¢”~! in rb = n variables and
E(fy)F) C Fy,

so by Corollary 4.1 we have PZ(f;,) =1 (mod g).

The polynomial f), ; defines a smooth Calabi—Yau hypersurface over I » of dimension
n — 2. The case of b =2, g = 3 is Example 4.9. In the case of b = 2, ¢ = 5 we have
#PZ( f25) = 2,035, 026; this quantity is 1 (mod 25), as promised by Corollary 4.1, and
it is not 1 (mod 125).

5. Life beyond the boundary

5.1. A more general problem

For d € N, let P; be the F,-subspace of F,[t,..., 1] consisting of r-tuples
(fi, ..., fr) with Z;:I deg(fj) < d. We can go “beyond the boundary” —i.e., generalize
the question asked in Section 2 — as follows.
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Question 5.1. Let d € N. What are the restrictions on fiber cardinalities of the map
E(fi,.... fy) 1 Fy — F} associated to any (fi, ..., f;) € Pa?

Our previous results are not quite included in this regime, because above we required
each f; to have positive degree, and now (to get an IF,-vector space, in particular) we
allow them to have degree 0. But this is no problem: suppose that we have f; € I, for
some 1 < j < r: without loss of generality we may suppose j = 1. Then each fiber
E~!(y) is of the form F, x X’ for some X' C IFZ’I, so #E~(y) = g - #X’. It follows
that Theorems 1.1 and 3.2 hold even if we allow the polynomials f; to be constant.’
It also implies that Theorem 1.2 holds verbatim if we allow constant polynomials, as
does Theorem 3.1 with the proviso that if all the polynomials are constant, the correct
conclusion is that ¢" | #Z(fi, ..., f,).

Thus we can view the results of Chevalley, Warning, Ax and Katz as addressing
Question 5.1 when d < n and Theorem 3.2 as addressing Question 5.1 when d = n.
Can anything be said if d > n?

5.2. Two relevant results

In a word: yes. The following result predates even the work of Chevalley and Warning.
As usual, we have recast it in fibered form.

Theorem 5.2 (Ore [24]). For f € Fylt1,...,t,], suppose that d := deg(f) < q — 1.
Then for all c € F, we have either E~(c) = IFZ or #E7'(c) < dq" .

A new aspect of Ore’s Theorem is that the “low degree” condition on f is in terms
of the size of the finite field, not in terms of the number of variables.

Theorem 5.2 is a special case of a result due to DeMillo-Lipton [14], Zippel [35] and
Schwartz [25]: if F is any field, A C F is a finite subset, and f € F[#},...,,] is a
nonzero polynomial of positive degree d, then

#ZA(f)=#x =(x1,....x,) € A" | f(x) =0} < d#HA)"".

Wikipedia gives an elegant proof using basic probability theory [1]. See [8, §4] for more
information on the results of Schwartz, Zippel and DeMillo—Lipton.
Here is a much more recent result that also addresses Question 5.1.

Theorem 5.3 (Kosters [19]). Let fi,..., fu € Fylt1, ..., t.] be polynomials, not all
constant, and put d = max;deg(f;). Let E = E(fi,..., f.) : Fj — [} be the
associated polynomial function, and put

Vi = E(IE‘;).
Then we have
n . ng—1)
#Vy=q" or#Vy <gq -

7 Indeed, it shows that in any polynomial system with a constant polynomial, all fiber cardinalities are 0
modulo g without any degree condition whatsoever.
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Since

d = maxdeg(f)) < ) deg(f)) =d,

j=1
Theorem 5.3 implies that when » = n, if (f1,..., fu) € P; and we put
_|n@-=1
e =|——-|,
d
then either every fiber of E = E(fi, ..., f,) has size 1 or there are at least e empty

fibers, a nontrivial constraint iff d < n(g — 1).
Theorem 5.3 is an improvement of an earlier result of Mullen—Wan—Wang [23], who
showed that with the same hypotheses we have

n w . (g =1
#Vy=4q" or #V; < ¢" — min T,q .

It is interesting to compare and contrast Theorems 5.2 and 5.3. Each result grows stronger
when ¢ is large compared to the degree. Theorem 5.2 applies to a single polynomial,
while Theorem 5.3 applies to a system of »r = n polynomials. Theorem 5.3 shows
that small degree implies that the fiber cardinalities must be either precisely equally
distributed or rather unequally distributed, while Theorem 5.2 shows that small degree
implies that the fibers must be either maximally unequally distributed or rather equally
distributed.

These results illustrate that Question 5.1 can have a nontrivial answer even when
d > n, though they leave it largely open.

5.3. The true boundary

We claim that Question 5.1 has a nontrivial answer whenever d < rn(q — 1) and a
trivial answer when d > rn(g — 1). To see why, let x € F} and put

8y = ]_[ (1=t —x)?h).
i=1

Then deg§, = (¢ — 1)n and the associated function E(8,) maps x to 1 and every other
element of IFZ to 0. The functions E(8) therefore form a basis for the IF,-vector space
of all functions from IFZ to IF,, and it follows that every function E : Fg — F, is
obtained by evaluating a polynomial of degree at most (¢ — 1)n.® So as we range over all
polynomials fi, ..., f, with Z;zl deg(f;) < rn(q — 1), the associated evaluation maps
E(f) : F, — I} give all functions between these sets, so there is nothing to say about
fiber cardinalities of such polynomials maps beyond what is true of fiber cardinalities of
all functions Fy — F7: namely, to each b € [ we have a non-negative integer

2 = #E~(b)

with the sole constraint that 3, pr 25 = ¢".

8 Such considerations form the beginning of Chevalley’s proof of Theorem 1.1.
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On the other hand, if d < rn(g — 1), then for at least one 1 < j < r we must
have deg(f;) < n(g — 1). In this case, as we saw in the proof of Theorem 1.1, we have
2 _cery fj(x) =0, so that the jth component of 3, g E(x) is 0. But

Y Ex) =) ub.

xelFy bely

so we get a constraint the z;,’s. There are maps that do not satisfy this constraint: indeed,
forany y e F/,for1 < j <rlet E; = y;d and put £ = (Ey,..., E,) : IE‘Z — ]F;.
Then

Yowb=) Ex=y.

bely xelFy
5.4. Beyond the degree

There are results of Chevalley—Warning type that take into account more refined
information on the polynomial system f, ..., f, than just the degrees of the polynomials.
Here is one, again stated in fibered form.

Theorem 5.4 (Morlaye [22]). Let n,my,...,m, € Z*. For 1 < i < n, put d; :=
ged(m;, g — 1). Let ay, ..., a,, b € F,; and let

f=at]" +- +a,.
If

I

then every ﬁber of E(f) has size divisible by p.

Morlaye’s results have been sharpened by Wan [31] who showed in particular that
under the hypotheses of Theorem 5.4, every fiber of E(f) has size divisible by g. A
further generalization is given in [7, Cor. 1.17].

A simple example in which Theorem 5.4 applies and Theorem 1.1 does not is
flt, i) = 1§ + tg’ + #;. In this case the polynomial has degree 5 but is “sparser”
than a general such polynomial. This can be formalized as follows: rather than just the
degree of each polynomial f; one may try to take into account its support, i.e., the
subset of indices i = (iy,...,i,) € N” such that the monomial t{' cee t,’;" appears in f;
with nonzero coefficient. Adolphson—Sperber give an important result along these lines
in terms of the Newton polyhedron of f; (which is defined in terms of its support) [2],
and the literature contains further such results as well.

Works of Smith [27], Zan—Cao [34] and Smith—Wan [28] strengthen the work of
Mullen—Wan—Wang in a different direction from that of Kosters, namely by taking the
supports of the polynomials fi, ..., f, € F4[t#, ..., ] into account.
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Appendix. Further study of homogeneous ternary cubic forms

In this appendix we take a closer look at the evaluation map on a homogeneous cubic
fel,lt, n, 6l

Singular and reducible cubics

In Example 4.6 we restricted to the case in which f is smooth and geometrically
irreducible, or otherwise put, defines a nice curve of genus one. What are the possible
values of #PZ for a plane cubic that is singular and/or geometrically reducible? We will
now write down all possibilities. We ask the reader with a prior familiarity with elliptic
curves to pause and think of what the classification should look like — each of the authors
has experience with elliptic curves, and the classification is longer than we would have
predicted!

Example A.1 (Geometrically Irreducible Singular Cubics). Let f(t1,t,,t3) € F,[t] be a
homogeneous cubic that is geometrically irreducible but singular. An irreducible plane
cubic has at most one singular point P = [x¢ : yo : Zo] in the projective plane, and over
a perfect field like I, if the cubic is singular there is a unique F,-rational singular point
[9, pp. 22-24]. At least one of xg, yg, zo must be nonzero; without loss of generality,
suppose zo # 0; then (xp, yo) is a singular point of the affine plane curve f(z;, t,, 1). The
change of variables f — g(t, 1) := f(t; — xo, t» — yo) brings the unique singular point
to (0, 0). Then we may write

g(t1, ) = gi(t1, 1) + g2(t1, 1) + g3(11, 1),

with g; homogeneous of degree i. To say that the point (0, 0) is singular is to say that
:,JTgl and 57“’; both vanish at (0, 0), which means that g; = 0. If also g» = 0, then g = g3 is
geometrically reducible, which implies that f is geometrically reducible, a contradiction.

So we have

o, ) = Atl2 + Btit, + Ctzz, A, B, C € F, are not all zero.
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We say that f has a

(a) split node if g, factors into linearly independent linear forms L, L, over IF,.

(b) nonsplit node if g, is irreducible over IF, but factors into linearly independent linear
forms L, L, over an algebraic extension of F, (equivalently, over [F,2).

(c) cusp if go = aL? for a linear form L and a € Fy.

We claim that

q f has a split node
#PZ = {q +2 f has a nonsplit node
g+ 1 f has acusp.

Thus Corollary 4.1 implies that E(f) : ]F; — IF, is surjective in the nodal cases.

These are well-known results,” but the interested reader can get a good sense of
them as follows: consider a homogeneous degree d polynomial f(¢,,, ;) over an
algebraically closed field k. Then for any linear form L € k[#, #5, 3], the locus in the
projective plane ]P’zF of f = L = 0 has size d provided that the intersection points are
counted with suitable intersection multiplicities. Each point P = [x¢ : yo : z0] € ]P’z itself
has a multiplicity mp € Z*, which is 1 iff the point P is nonsingular. More precisely, if
as above we dehomogenize and move P to (0, 0) in the affine plane to get a polynomial
g(ty, 1) with g(0, 0) = 0, then mp is the least i such that the degree i homogeneous part
gi of g is nonzero, and the tangent lines at P are the linear factors of g;. Moreover, for
any line L through P, the intersection multiplicity of L with f at P is at least mp, with
equality iff L is not a tangent line at P. So:

(a) A split node P has two tangent lines L; and L,, and each is defined over F,. Since
mp = 2, if L is any nontangent line passing through P, its intersection with P
contributes mp = 2 to the multiplicity, whereas deg f = 3, leaving exactly one
more k-rational intersection point. If L is a tangent line, then its intersection with
P contributes at least 3 to the multiplicity, so L intersects f at no other point (even
over the algebraic closure). For every point Q of ]P’z(]Fq) different from P, there is
a unique F,-rational line joining Q to P, and the set of F,-rational lines through
any P € P*(F,) corresponds to the hyperplanes in a 3-dimensional F,-vector space
that contain a given line, of which there are g + 1. Therefore the 2 tangent lines at
P contribute no more points to PZ, while each of the ¢ +1 —2 = g — 1 nontangent
lines contributes a unique point, giving

#HPZ =14 —-1)=q.

(b) In the case of a nonsplit node, the tangent lines are not [F,-rational, which means
that each of the ¢ + 1 F,-rational lines through P intersects a unique IF,-rational
point on the projective curve. This shows that

HPZ =1+ (q+1)=q+2.

9 Unfortunately we have only been able to find them in the literature in the special case of a singular
Weierstrass cubic, which is why we give a detailed sketch here.
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(c) In the case of a cusp, there is a unique tangent line, which again intersects P at
no other point. Each of the ¢ other IF,-rational lines through P intersects a unique
IF,-rational point on the projective curve. This shows that

#PZ =q + 1.

Example A.2 (Geometrically Reducible Cubics). Now suppose that f(t, i, t3) € F,[¢t]
is a geometrically reducible cubic. There are several cases:

(@) We have f = L;L,L3 is a product of linear forms. This was analyzed in
Example 4.3(c). Our analysis was complete except for the case in which the
corresponding hyperplanes are distinct and intersect in a line.

(b) We have F = L, - C, with L; a linear form and C an irreducible quadratic that

factors over qu into LoL3.
In this case we have #PZ(C) = 1: we have two lines that are interchanged by
the action of Galois, with a unique [F,-rational intersection point, and we have
#PZ(L) = g + 1. If the line intersects the conic in its unique IF,-rational point,
then #PZ = g + 1. Otherwise the line intersects the conic in two points, neither of
which is F,-rational, so #PZ = g + 2.

(c) We have f = L - C, with L a linear form and C a quadratic that is geometrically
irreducible. In this case #PZ is equal to the number of points on the line, g + 1,
plus the number of points on the conic, ¢ + 1, minus the number of points /
on the intersection, which can be 0, 1 or 2. We have I = 0 iff there are two
intersection points in E but neither is defined over F,; in the middle case, the line
is tangent to the conic, so there is one IF,-rational intersection point; in the last
case there are two F,-rational intersection points. Thus in the tangency case we
have #PZ =2g + 1 =1 (mod gq).

(d) We have that f is irreducible over I, but factors over Fqs as a product of linear
forms. In this case over E we have three lines arranged in a triangle and cyclically
permuted by the action of Galois, so #PZ = 0.

Computational results

Two of the authors undertook a computer search for instances of homogeneous degree
n polynomials f € K[z, ..., 1,] with nonsurjective evaluation map E : Fj — F,. By
far the most interesting results were attained with n = 3: though in retrospect we should
have found the Fermat cubic #; +; + 13 over F4 by pure thought, in fact we first did so
via computer search.

q = 2. Through a complete search of plane cubics over I, we find that there are
exactly 7 with non-surjective evaluation map. Each such plane cubic factors as a product
of three linear forms over [F,, with the intersection of the corresponding hyperplanes a
line, i.e., is the case of Example A.2(c)(ii).

q € {3,5,8,9, 11}. Through complete searches, we find that there are no plane cubics
with non-surjective evaluation map over IF, for ¢ € {3,5,8,9, 11}.

g = 4. Fixa € F4 \ [y, so a®> +a + 1 = 0. Through a complete search of plane
cubics over [F4 we found 840 smooth, geometrically irreducible cubics with non-surjective
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evaluation map. They are all isomorphic, as elliptic curves, to the Fermat elliptic curve
1} +6;+1; = 0 of Example 4.6. We also find 2583 reducible cubics f with non-surjective
evaluation map, having either 5 or 13 points projectively over [F4. The following cases
occur:

(a) The cubic f factors over F4 as a product of linear polynomials L; with correspond-
ing hyperplanes H;, and

(1) the H; are all equal (the case of Example 4.3(b)), for example
f=X+aX*Z+a’X7*°+7° = (X +aZ)’.

(ii) the hyperplanes H; are distinct with intersection a line (the case of Exam-
ple 4.3(c)(ii)), for example

fF=X4+XY+XZ+XY*+X27*
= XX +aY +aZ)X +a’Y +a’7).

(b) The cubic f factors over 4 as the product of a linear and a conic to which it is
tangent, with the conic factoring over ¢ as a product of linear forms (one case of
Example A.2(b)). For example:

f=aV*+ad*Z> +aX*Y + X*Z 4+ a®XY* + XZ* +avZ?
=a’(aY + Z)aX* +a*XY +aY* +aXZ+YZ + Z%).

The only possibility for factorization that is not determined by Corollary 4.1 to
necessarily have surjective evaluation map, and does not occur over [y, is the product
of a linear polynomial and a geometrically irreducible conic to which it is tangent. We
have not witnessed this factorization type having non-surjective evaluation map over IF,
for any ¢.

q = 7. Through a complete search of plane cubics over [F; we find

(a) 19494 which have non-surjective evaluation map with 22 points projectively over
[F7. Each of these factors as a product of three linear forms over 7, with the mutual
intersection of the corresponding hyperplanes a line (the case of Example 4.3(c)(ii)),
and

(b) 342 which have non-surjective evaluation map with 8 points projectively over F5.
These consist of the cubes of linear factors over [F; (Example 4.3(b)).
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