

Constructible Numbers, Division Points and Class Field Theory

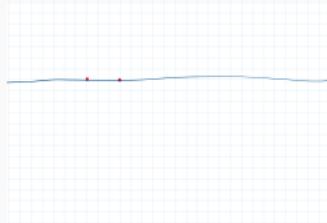
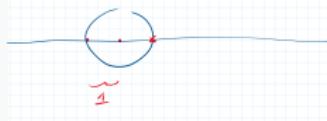
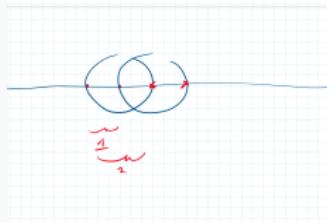
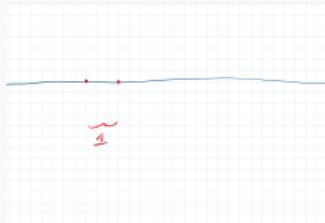
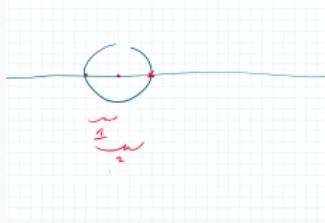
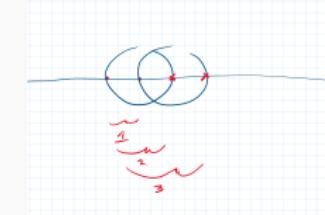
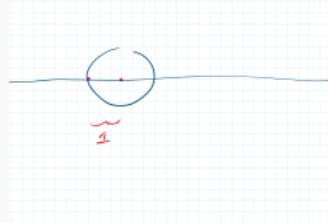
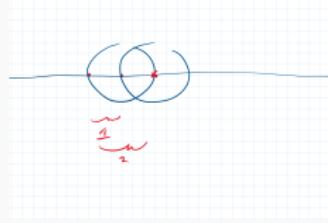
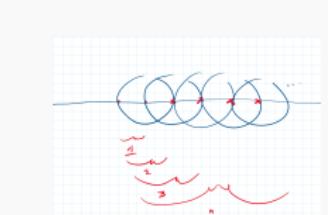
Tyler Genao

April 14, 2020

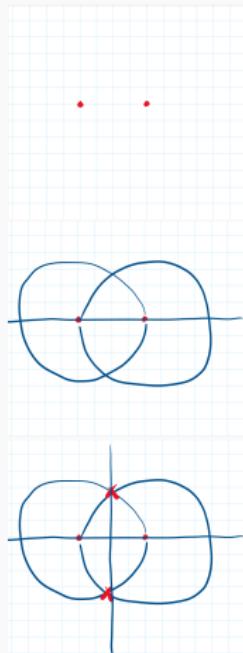
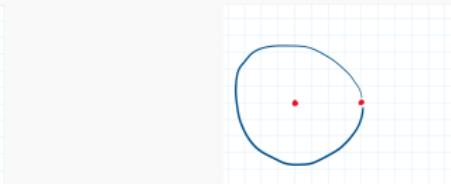
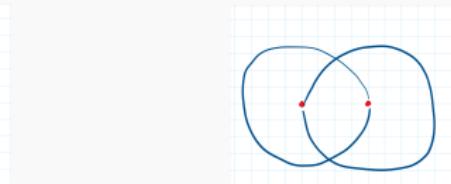
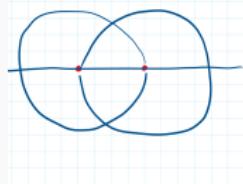
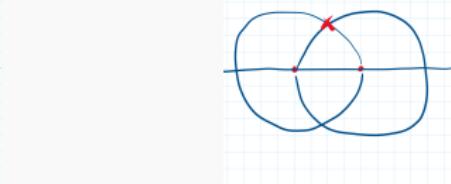
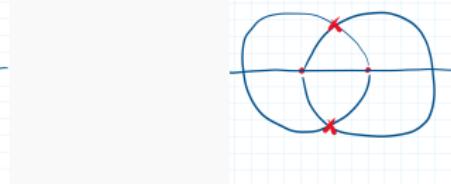
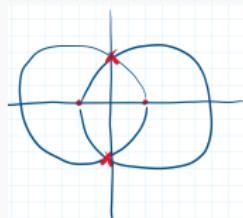
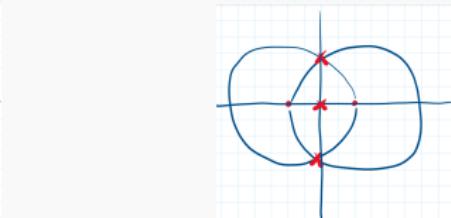
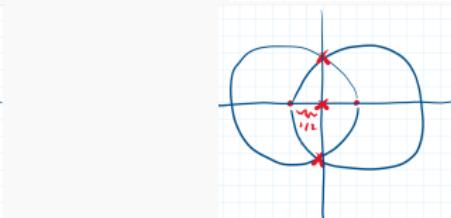
- ▶ Broadly speaking, **class field theory** is the study of abelian extensions of number fields, function fields and local fields, such as $\mathbb{Q}(i)$, $\mathbb{F}_p(t)$, \mathbb{Q}_p and so on.
- ▶ We will focus our study on *number fields*, e.g. finite extensions K of \mathbb{Q} .
- ▶ We will see that abelian Galois extensions of K can be described by their arithmetic: namely, the behavior of prime ideals of their number rings.
- ▶ Explicit class field theory (describing all abelian extensions explicitly) is usually very hard, but we will see some of this for \mathbb{Q} and imaginary quadratic fields.

- ▶ During antiquity, geometry saw important development from many Ancient Greece mathematicians, like Pythagoras and Euclid.
- ▶ Their interests in geometry included **straightedge and compass constructions**: what geometric objects (lengths, angles, polygons) can be constructed using only an idealized straight line, and a compass?

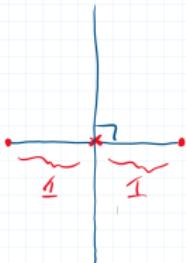
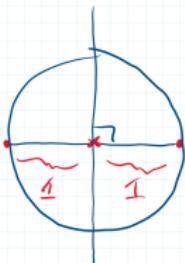
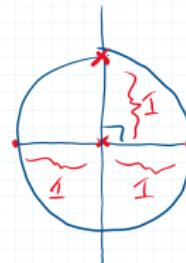
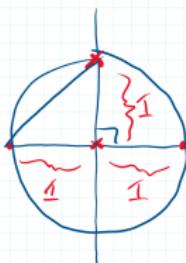
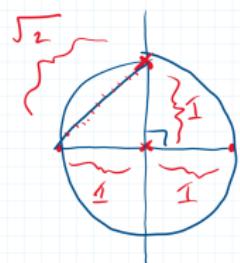
- ▶ How to play this game:
- ▶ Start with the points $(0, 0)$ and $(1, 0)$ in \mathbb{R}^2 . In straightedge and compass constructions, one can only use the following basic constructions on pre-existing points, lines and circles:
 1. Create an infinite line through two distinct points; (**straightedge**)
 2. For two distinct points, draw a circle centered at one which contains the other; (**compass**)
 3. determine the points of intersection between two distinct lines, a line and a circle, or two distinct circles. (**determination**)
- ▶ Given these rules, what types of points can we determine in a finite amount of steps?
- ▶ Call such points **constructible**, and the polygons made from such points **constructible polygons**.
- ▶ Call a number $a \in \mathbb{R}$ a **constructible number** if there is a constructible point with x or y -coordinate equal to a .

Constructibility of \mathbb{N} :

Constructibility of $\frac{1}{2}$ (bisecting lines is constructible):



Perpendicular lines to a constructible point are constructible:

Constructibility of $\sqrt{2}$:

- ▶ Let us extend constructibility to \mathbb{C} : call $x + iy \in \mathbb{C}$ a **constructible number** if $(x, y) \in \mathbb{R}^2$ is a constructible point.
- ▶ The set $F \subseteq \mathbb{C}$ of constructible numbers is a field; so if a, b are constructible then so are $a \pm b$, ab , a/b .
- ▶ F is also closed under taking square roots.

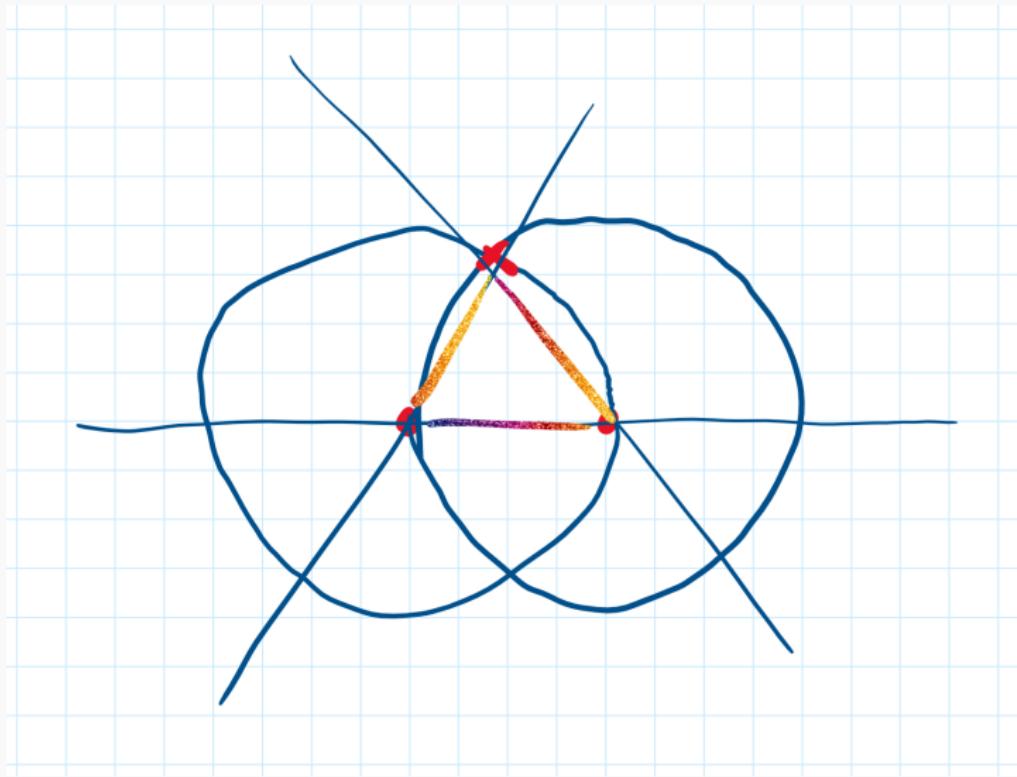
- ▶ More than a millennium after Greek antiquity, Gauss publishes the *Disquisitiones Arithmeticae* (or *Higher Arithmetic*), notable for making rigorous the field of number theory. (It also started the format *Theorem-Proof-Corollary* for textbooks.)
- ▶ Although concerning itself in large part with modular arithmetic, the last section focuses on "equations defining a circle."
- ▶ It was in this section that Gauss was able to show the following:

- ▶ Recall that *Fermat primes* are primes of the form $F_r := 2^{2^r} + 1$ where $r \geq 0$.
 - ▶ The first few Fermat primes are 3, 5, 17, 257, 65537, ...

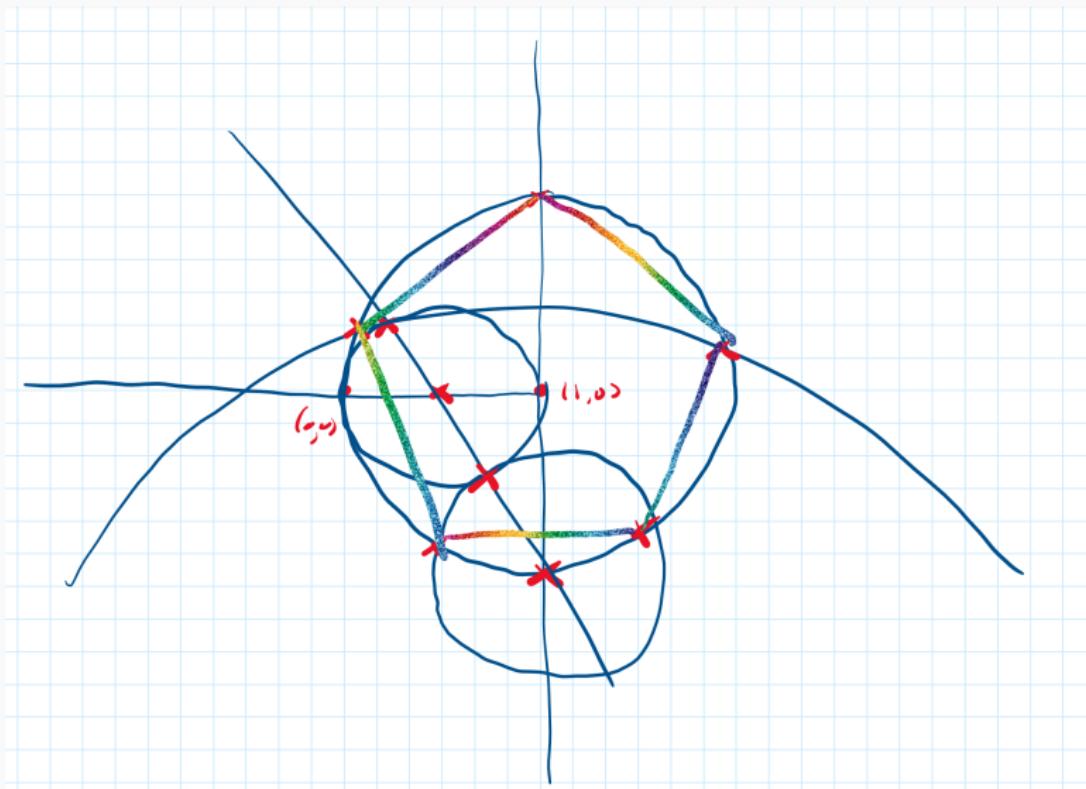
Theorem 1 (Gauss).

A regular n -gon can be constructed by straightedge and compass if n is a product of a power of two with a squarefree product of Fermat primes.

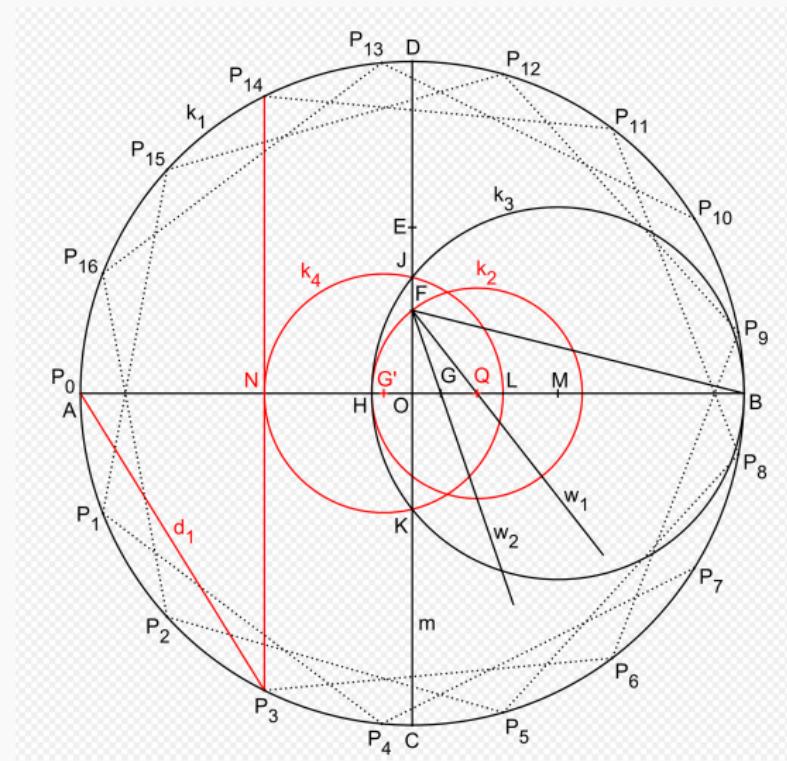
Constructibility of a regular 3-gon:



Constructibility of a regular 5-gon (interior to a circle):



Constructibility of a regular 17-gon (cf. Wikipedia):



- ▶ Recall that the n 'th roots of unity are the complex numbers $\zeta \in \mathbb{C}$ which satisfy $\zeta^n = 1$.
- ▶ Gauss' construction of the regular n -gon involves dividing the unit circle into n arcs of equal length, the “division points” being the n 'th roots of unity

$$\begin{aligned} e^{2\pi i k/n} &= \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right) \\ &\rightsquigarrow \left(\cos\left(\frac{2\pi k}{n}\right), \sin\left(\frac{2\pi k}{n}\right)\right) \in \mathbb{R}^2, \quad k = 0, 1, \dots, n-1. \end{aligned}$$

(This tells us that the n 'th roots of unity for such n are constructible numbers.)

- ▶ The proof also illustrates that $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is an *abelian extension*, namely $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ has abelian Galois group.

- ▶ At the beginning of Section 7 in *Disquisitiones*, Gauss explains that his methods of proof apply not only to circular functions, but also to other **transcendental functions** – functions, like \sin and \exp , that don't satisfy polynomial equations.
 - ▶ For example, he references transcendental functions which depend on the integral $\int \frac{dx}{\sqrt{1-x^4}}$. Such functions are called *elliptic functions*.
- ▶ Inspired by Gauss' work and claim, Abel proved an analogous result for dividing the arclength of a lemniscate.

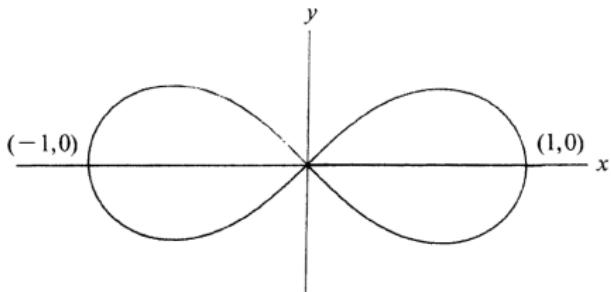


FIG. 1

- ▶ By calculus, if we set

$$\frac{L}{2} := \int_0^1 \frac{dx}{\sqrt{1-x^4}}$$

then the arclength of our lemniscate is $2L$. Compare this to the arclength 2π of the unit circle.

- ▶ Abel constructs functions $\text{sinlemn}(r)$ and $\text{coslemn}(r)$, which give points on the lemniscate; compare to $\sin(r)$ and $\cos(r)$, which give points on the circle.
- ▶ Abel shows that sinlemn can be extended to a meromorphic function on \mathbb{C} , and is periodic w.r.t. the complex lattice

$$\mathbb{Z}2L + \mathbb{Z}2Li := \{2aL + 2bLi : a, b \in \mathbb{Z}\}.$$

Call such functions **elliptic**, or **doubly periodic**.

- ▶ Compare this to $\sin(z)$ being periodic w.r.t. $\mathbb{Z}2\pi$.

- ▶ Our question is: for what integers $n > 0$ is $\text{sinlemn}(2L/n)$ constructible?
E.g., for what values of n are the n -division points for the lemniscate constructible?
- ▶ Compare to constructible values of $\sin((2\pi)/n)$, e.g. for which n is the primitive n 'th roots of unity $\zeta_n \rightsquigarrow (\cos(2\pi/n), \sin(2\pi/n)) \in S^1$ constructible?
- ▶ Abel proves an analogous result to constructibility of the regular n -gon:

Theorem 2 (Abel's Theorem).

The arc of a lemniscate can be divided into n equal parts iff n is a product of a power of 2 and distinct Fermat primes.

- ▶ **Main takeaway:** in Gauss' construction, the “dividing points” of the circle were the n 'th roots of unity, and such division points generate abelian Galois extensions of \mathbb{Q} . Is there a similar interpretation for the “ n -division points” on the lemniscate?
- ▶ **Yes:** as we will see, we can translate constructibility of $\text{sinlemn}(z)$ to constructibility of $\wp(z)$, which will make this a question about n -torsion points on elliptic curves.

- ▶ Let Λ be a *complex lattice*: a discrete rank 2 \mathbb{Z} -submodule of \mathbb{C} .
 - ▶ For example, $\Lambda := \mathbb{Z} + i\mathbb{Z} := \{a + bi : a, b \in \mathbb{Z}\}$ is the Gaussian integers.
- ▶ We define the *Weierstrass \wp -function* on \mathbb{C} as

$$\wp(z) := \wp(z, \Lambda) := \frac{1}{z^2} - \sum_{w \in \Lambda} \left[\frac{1}{w^2} - \frac{1}{(z-w)^2} \right].$$

- ▶ As it turns out, one has that
 1. \wp is meromorphic on \mathbb{C} ;
 2. \wp is doubly periodic on the lattice Λ ; so $\forall w \in \Lambda$, $\wp(z+w) = \wp(z)$ for $z \in \mathbb{C}$ where \wp is defined;
 3. \wp and its derivative satisfy an *elliptic curve equation*
 $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$, where $g_2 := g_2(\Lambda), g_3 := g_3(\Lambda) \in \mathbb{C}$.
- ▶ One is also afforded a complex-analytic group isomorphism

$$\mathbb{C}/\Lambda \xrightarrow{\sim} E_\Lambda(\mathbb{C}) : y^2 = 4x^3 - g_2x - g_3$$

given by the \wp -function:

$$z \mapsto (\wp(z), \wp'(z)).$$

Theorem 3.

For a complex number $z \in \mathbb{C}$, $\sin \operatorname{lemn}(z)$ is constructible iff $\wp(z)$ is constructible.

- ▶ So for us, to check constructibility of $\sin \operatorname{lemn}(2L/n)$ it suffices to study the values $\wp(2L/n)$, and ultimately the n -torsion points on an elliptic curve.
- ▶ With the above isomorphism, the n -torsion points on E_Λ corresponds to the n -torsion on the torus \mathbb{C}/Λ :

$$(\mathbb{C}/\Lambda)[n] := \{z \in \mathbb{C} : n(z + \Lambda) = (0 + \Lambda)\} = \{z \in \mathbb{C} : nz \in \Lambda\}.$$

We observe that $(\mathbb{C}/\Lambda)[n] = \frac{1}{n}\Lambda/\Lambda$.

- ▶ For example, $(\mathbb{C}/[1, i])[n] = [\frac{1}{n}, \frac{i}{n}]/[1, i]$.
- ▶ The conclusion is that the n -torsion of $E := E_\Lambda$ for a lattice $\Lambda = [2L, 2Li]$ is

$$E[n] = \left\{ \left(\wp\left(\frac{2aL + 2bLi}{n}\right), \wp'\left(\frac{2aL + 2bLi}{n}\right) \right) : 0 \leq a, b < n \right\}.$$

Observe that $\wp(2L/n)$ corresponds to the x -coordinate of n -torsion point $(\wp(2L/n), \wp'(2L/n))$.

- To recap: one has a group isomorphism

$$\exp : (\mathbb{R}/2\pi\mathbb{Z}, +) \xrightarrow{\sim} (S^1, \cdot)$$

by $\theta \mapsto e^{i\theta}$. The n -division points $\{1, \zeta_n, \zeta_n^2, \dots, \zeta_n^{n-1}\}$ of our circle correspond to the n -torsion points of S^1 as a group, which under this isomorphism correspond to the n -torsion points $\{0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots, \frac{2\pi(n-1)}{n}\}$ of $\mathbb{R}/2\pi\mathbb{Z}$.

- Thus, the abelian extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is generated by the n -torsion points on S^1 .
- In the lemniscate case: Abel constructed a function sinlemn periodic w.r.t. the lattice $\Lambda := [2L, 2Li]$. One has $\text{sinlemn}(z)$ is constructible iff $\wp(z)$ is constructible. Following that, we noted a group isomorphism

$$(\mathbb{C}/[2L, 2Li], +) \xrightarrow{\sim} (E_\Lambda, +)$$

by $z \mapsto (\wp(z), \wp'(z))$.

- **Question:** is the extension $\mathbb{Q}(E_\Lambda[n])/ \mathbb{Q}$ generated by the n -torsion points on E_Λ abelian?

► No.

- **BUT:** Just as in Gauss' proof of constructibility of the regular n -gon, Abel's proof essentially constructs an abelian extension replacing \mathbb{Q} with $\mathbb{Q}(i)$. That is, $\mathbb{Q}(i)(E[n])/\mathbb{Q}(i)$ is abelian.
 - For those in the know, observe that $E_{[L,Li]} \cong E := E_{[1,i]}$ has complex multiplication by $\mathbb{Z}[i] = [1, i]$ which has class number one. Thus, $K := \mathbb{Q}(i)$ is the Hilbert class field of itself, and $\mathbb{Q}(E[n])/K = K(E[n])/K$.

- ▶ Kronecker was greatly inspired by Abel's work on n -division points on the lemniscate, and how it generated an abelian extension of $\mathbb{Q}(i)$.
- ▶ In the mid 19th century, he announced the proof of a theorem characterizing abelian extensions of \mathbb{Q} .

Theorem 4 (Kronecker-Weber; 1853, 1886, 1896).

Any abelian extension of \mathbb{Q} is contained in some cyclotomic field $\mathbb{Q}(\zeta_n)$.

- ▶ Kronecker's proof was missing the case where the degree is a power of two; Weber offered a proof ~ 30 years later, but it was also incorrect. Hilbert provided the first complete proof at the end of the 19'th century.

- ▶ Also following Abel's work, Kronecker produced abelian extensions for **any** imaginary quadratic field using special values of elliptic and modular functions.
- ▶ It was **Kronecker's Jugendtraum** (Kronecker's dream of youth) that any abelian extension of any imaginary quadratic field lies in one of the extensions he created.
- ▶ For example, he believed that every abelian extension of $\mathbb{Q}(i)$ lied in some $\mathbb{Q}(i)(\text{sinlemn}(2L/n))$.

- ▶ What exactly were the abelian extensions of imaginary quadratic K that Kronecker constructed?
- ▶ Recall that $\mathrm{SL}_2(\mathbb{Z})$ is the set of integer matrices with determinant 1.
 - ▶ Such matrices define *linear fractional transformations* on the upper half plane \mathbb{H} .
- ▶ A **modular function** is a meromorphic function $f : \mathbb{H} \rightarrow \mathbb{C}$ so that f is “ $\mathrm{SL}_2(\mathbb{Z})$ -invariant”; that is, for any linear fractional transformation $M \in \mathrm{SL}_2(\mathbb{Z})$ one has

$$f(M \cdot z) = f(z), \quad \forall z \in \mathbb{H}.$$

- ▶ For those in the know, note that modular functions define functions on $X(1)(\mathbb{C})$, the moduli space of complex elliptic curves.

- ▶ The main example of a modular function is the **modular j -invariant**
 $j : \mathbb{H} \rightarrow \mathbb{C}$, given by

$$j(\tau) := \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \dots$$

where $q := e^{2\pi i\tau}$.

- ▶ The modular j -invariant agrees with the j -invariant of an elliptic curve:
 $j(\tau) = j(E_{[1,\tau]})$ for any $\tau \in \mathbb{H}$.
- ▶ **Kronecker's Jugendtraum** is that all abelian extensions of an imaginary quadratic field K are given by adjoining to K special values of the modular function $j(\tau)$.
 - ▶ This statement is still wrong, as one needs special values of both $j(\tau)$ and $\wp(z)$ – these will correspond to both the j -invariant and the n -torsion on an elliptic curve, respectively.
 - ▶ The actual abelian extensions of $E := E_{[1,\tau]}$ will be contained in abelian extensions of K that look like

$$K(j(E), x(E[n]))$$

where $x(E[n]) \rightsquigarrow \wp\left(\frac{a+b\tau}{n}\right)$ are the x -coordinates of the n -torsion points.

- ▶ Kronecker noticed some interesting things about the abelian extensions $K(j(E))/K$ he was creating.
 1. The Galois group $\text{Gal}(K(j(E))/K)$ is isomorphic to the class group $\text{Cl}(K)$;
 2. $K(j(E))/K$ is an unramified extension;
 3. all ideals of K become principal in $K(j(E))$.
- ▶ About a decade later, Hilbert conjectured the following generalization: for **any** number field L , there is a unique finite abelian extension L_1 so that
 1. $\text{Gal}(L_1/L) \cong \text{Cl}(L)$;
 2. L_1/L is unramified, and maximal w.r.t. this property;
 3. every ideal of L becomes principal in L_1 ;
 4. a prime \mathfrak{p} of L splits in L_1 iff \mathfrak{p} is principal.
- ▶ What is the connection to ramification and splitting?

- ▶ In his study of primes, Kronecker conjectured that a Galois extension L of \mathbb{Q} is characterized by how primes $p \in \mathbb{Z}$ split in L .
 - ▶ For example, $\mathbb{Q}(i)$ is the only Galois extension of \mathbb{Q} so that $p \in \mathbb{Z}$ splits in $\mathbb{Q}(i)$ iff $p \equiv 1 \pmod{4}$.
- ▶ It was M. Bauer who proved this in 1903. Let $S_{L/K}$ be the set of prime ideals of K which split in L .

Theorem 5.

Let L_1, L_2 be Galois extensions of a number field K . Then $S_{L_1/K} \subseteq S_{L_2/K}$ iff $L_2 \subseteq L_1$. In particular, $L_1 = L_2$ iff $S_{L_1/K} = S_{L_2/K}$.

- ▶ T. Takagi was a Japanese mathematician who, in his 1903 thesis, proved Kronecker's Jugendtraum for $\mathbb{Q}(i)$ using special values of sinlemn, just as Kronecker had hoped.
- ▶ It was Takagi who also proved the main theorems of general class field theory, along with contributions from Weber.
- ▶ It involves generalized class groups, and a modulus which will “modulate” the splitting behavior.

- ▶ For a number field K , a **modulus** \mathfrak{m} is an integral ideal of K together with a squarefree product of real embeddings $K \hookrightarrow \mathbb{R}$.
 - ▶ For example, $n\mathbb{Z}$ is a modulus for \mathbb{Q} ; so is $n\mathbb{Z} \cdot \infty$, where $\infty : \mathbb{Q} \hookrightarrow \mathbb{R}$ is the usual embedding.
 - ▶ An imaginary quadratic field K has no real embeddings, since the identity and conjugation embeddings cannot send K into \mathbb{R} . So a modulus here is just an integral ideal of K ., e.g. an ideal $I \subseteq \mathcal{O}_K$.
- ▶ We usually write a modulus as $\mathfrak{m} = \mathfrak{m}_0\mathfrak{m}_\infty$, where \mathfrak{m}_0 is the integral data and \mathfrak{m}_∞ is the infinite data.
- ▶ Recall that for a number field K , its *class group* $\text{Cl}(K)$ is

$$\text{Cl}(K) := \frac{\mathcal{I}(K)}{\mathcal{P}(K)}$$

where

$$\mathcal{I}(K) := \{\text{Ideals} \neq 0\}$$

and

$$\mathcal{P}(K) := \{\text{Principal ideals} \neq 0\}.$$

- ▶ This corresponds to the trivial modulus $\mathfrak{m} = 1 := \mathcal{O}_K$.

- We will construct more general “ \mathfrak{m} -ideal class groups” as follows.
- Consider the set of nonzero ideals $I \subseteq K$ whose prime factorization does not include any primes which divide \mathfrak{m} :

$$\mathcal{I}_{\mathfrak{m}}(K) := \{I \neq 0 \subseteq K : \forall \mathfrak{p} \mid \mathfrak{m} \ v_{\mathfrak{p}}(I) = 0\}.$$

So $\mathcal{I}_{\mathfrak{m}}(K)$ is generated by the primes not dividing \mathfrak{m} .

- $\mathcal{I}_1(K) = \mathcal{I}(K)$.
- For $K = \mathbb{Q}$, $\mathcal{I}_{6\mathbb{Z}}(\mathbb{Q}) = \{\text{fractional ideals } \frac{a}{b}\mathbb{Z} : 6 \nmid a, 6 \nmid b\}$.

- Next, consider the set of principal ideals with a generator congruent to 1 mod \mathfrak{m}_0 **and positive under real embeddings**. Namely,

$$\mathcal{P}_{\mathfrak{m}}(K) := \{I \neq 0 \subseteq K : \exists \alpha \in K \text{ so that } I = \alpha \mathcal{O}_K, \alpha \equiv 1 \pmod{\mathfrak{m}_0}$$

and $\forall \infty \mid \mathfrak{m}_{\infty} \infty(\alpha) > 0$.

Some facts:

- $\mathcal{P}_1(K) = \mathcal{P}(K)$.
- For $K = \mathbb{Q}$, we have $(2) \in \mathcal{P}_{3\mathbb{Z}}(\mathbb{Q})$ but $(3) \notin \mathcal{P}_{3\mathbb{Z}}(\mathbb{Q})$.
- Certainly $\mathcal{P}_{\mathfrak{m}}(K) \subseteq \mathcal{I}_{\mathfrak{m}}(K)$. Their quotient is the **\mathfrak{m} -ideal class group**

$$\text{Cl}_{\mathfrak{m}}(K) := \frac{\mathcal{I}_{\mathfrak{m}}(K)}{\mathcal{P}_{\mathfrak{m}}(K)}.$$

- ▶ For a number field K and a modulus \mathfrak{m} in K , call any subgroup $H \subseteq \text{Cl}_{\mathfrak{m}}(K)$ a **congruence subgroup mod \mathfrak{m}** .
 - ▶ Congruence subgroups correspond to intermediate subgroups $\mathcal{P}_{\mathfrak{m}}(K) \subseteq H_0 \subseteq \mathcal{I}_{\mathfrak{m}}(K)$. We will interchange H and H_0 .
- ▶ Each congruence subgroup H contains (an infinite amount of) prime ideals. As we will see, this will be the splitting information we'll need for our *class fields*.
- ▶ For a congruence subgroup H , a **class field** is a finite abelian extension K_H/K with splitting information the set of primes in H : namely,

$$\mathfrak{p} \subseteq K \text{ splits completely in } K_H \Leftrightarrow \mathfrak{p} \in H.$$

- ▶ Class fields are unique, by Bauer's result.
- ▶ As an example, the class field of $H_0 := \mathcal{P}_{(4)\infty}(\mathbb{Q})$ is $\mathbb{Q}(i)$, since for a prime $p \in \mathbb{Z}$ one has $p \in H$ iff $p > 0$ and $p \equiv 1 \pmod{4}$.

Theorem 6 (Class Field Theory. Takagi, 1920).

Let K be a number field.

1. (Existence) For each congruence subgroup $H \subseteq Cl_m(K)$, there is a **class field** for H : namely, a finite abelian extension K_H/K so that

$$\mathfrak{p} \subseteq K \text{ splits completely in } K_H \Leftrightarrow \mathfrak{p} \in H.$$

2. (Isomorphism) One has $G(K_H/K) \cong H$.
3. (Completeness) Any finite abelian extension of K is a class field for some congruence subgroup H .
4. (Comparison) If $H_1, H_2 \subseteq Cl_m(K)$, then $L_{H_1} \subseteq L_{H_2}$ iff $H_2 \subseteq H_1$.

Class field theory for \mathbb{Q} .

- ▶ Let us prove the Kronecker-Weber Theorem: **every abelian extension of \mathbb{Q} is contained in some cyclotomic field $\mathbb{Q}(\zeta_n)$.**
- ▶ **Step 1:** The class field for \mathbb{Q} of modulus $(n)\infty$ is the cyclotomic field $\mathbb{Q}(\zeta_n)$.
 - ▶ By algebraic number theory, a prime $p \in \mathbb{Z}_{>0}$ splits in $\mathbb{Q}(\zeta_n)$ iff $p \equiv 1 \pmod{n}$.
 - ▶ Then we observe that $p \equiv 1 \pmod{n}$ iff $(p) \in \mathcal{P}_{(n)\infty}(\mathbb{Q})$.
 - ▶ So by definition, $\mathbb{Q}(\zeta_n)$ is the class field for $(n)\infty$.
- ▶ **Step 2:** Let K/\mathbb{Q} be abelian. By Class Field Theory, K corresponds to a congruence subgroup H for some modulus \mathfrak{m} .
- ▶ Any modulus for \mathbb{Q} is of the form (n) or $(n)\infty$. Note that $\mathcal{P}_{(n)\infty}(\mathbb{Q}) \subseteq \mathcal{P}_{(n)}(\mathbb{Q})$.
- ▶ We thus have $\mathcal{P}_{(n)\infty}(\mathbb{Q}) \subseteq H$ for some n , so by Comparison we get $\mathbb{Q}_H = K \subseteq \mathbb{Q}_{(n)\infty} = \mathbb{Q}(\zeta_n)$. QED.

- ▶ Following the above, we have an explicit class field theory for \mathbb{Q} : for example, we know that the $(n)\infty$ -class fields are the cyclotomic fields $\mathbb{Q}(\zeta_n)$.
 - ▶ Such extensions are generated by special values of e^z on n -torsion $0, \frac{2\pi}{n}, \dots, \frac{2\pi(n-1)}{n}$ of $\mathbb{R}/2\pi\mathbb{Z}$.
- ▶ One also has an explicit class field theory of imaginary quadratic fields K , described by complex multiplication.
 - ▶ The m -class fields are generated by special values of $j(z)$ on quadratic numbers $\tau \in \mathbb{H}$ and $\wp(z)$ on n -torsion $\frac{a+b\tau}{n}$, $0 \leq a, b < n$ on $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$, for a particular τ .
- ▶ Following this theme, for a number field K what other **special values** of **transcendental functions** must we look at to generate class fields for K ?
- ▶ This is the question of **Hilbert's Twelfth Problem**. There is much work to be done on this front.

References

- [1] Keith Conrad, *History of Class Field Theory*.
<https://kconrad.math.uconn.edu/blurbs/gradnumthy/cfthistory.pdf>.
- [2] J.S. Milne, *Class Field Theory*. Version 4.02.
<https://www.jmilne.org/math/CourseNotes/CFT.pdf>.
- [3] Michael Rosen, *Abel's Theorem on the Lemniscate*. Amer. Math. Monthly, Vol. 88 (1981), 387–395.
- [4] Joseph Silverman, *Advanced Topics in the Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics 151, Springer, 1994.