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» Broadly speaking, class field theory is the study of abelian extensions of
number fields, function fields and local fields, such as Q(i), F,(t), Qp and
so on.

» We will focus our study on number fields, e.g. finite extensions K of Q.

» We will see that abelian Galois extensions of K can be described by their
arithmetic: namely, the behavior of prime ideals of their number rings.

» Explicit class field theory (describing all abelian extensions explicitly) is
usually very hard, but we will see some of this for QQ and imaginary
quadratic fields.
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Constructible numbers and division points

» During antiquity, geometry saw important development from many
Ancient Greece mathematicians, like Pythagoras and Euclid.

» Their interests in geometry included straightedge and compass
constructions: what geometric objects (lengths, angles, polygons) can be
constructed using only an idealized straight line, and a compass?
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Constructible numbers and division points

» How to play this game:

> Start with the points (0,0) and (1,0) in R?. In straightedge and compass
constructions, one can only use the following basic constructions on
pre-existing points, lines and circles:

1. Create an infinite line through two distinct points; (straightedge)
2. For two distinct points, draw a circle centered at one which contains the
other; (compass)
3. determine the points of intersection between two distinct lines, a line and a
circle, or two distinct circles. (determination)
» Given these rules, what types of points can we determine in a finite
amount of steps?

» Call such points constructible, and the polygons made from such points
constructible polygons.

» Call a number a € R a constructible number if there is a constructible
point with x or y-coordinate equal to a.
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Constructible numbers and division points

Constructibility of N:
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Constructible numbers and division points

Constructibility of 3 (bisecting lines is constructible):
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Constructible numbers and division points

Perpendicular lines to a constructible point are constructible:
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Constructible numbers and division points

Constructibility of v/2:
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Constructible numbers and division points

» Let us extend constructibility to C: call x + iy € C a constructible
number if (x,y) € R? is a constructible point.

» The set F C C of constructible numbers is a field; so if a, b are
constructible then so are a+ b, ab, a/b.

» F is also closed under taking square roots.

Tyler Genao Constructibility and Class Field Theory



Constructible numbers and division points

» More than a millennium after Greek antiquity, Gauss publishes the
Disquisitiones Arithmeticae (or Higher Arithmetic), notable for making
rigorous the field of number theory. (It also started the format
Theorem- Proof-Corollary for textbooks.)

» Although concerning itself in large part with modular arithmetic, the last
section focuses on "equations defining a circle.”

» |t was in this section that Gauss was able to show the following:
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Constructible numbers and division points

» Recall that Fermat primes are primes of the form F, := 22" + 1 where
r>0.

» The first few Fermat primes are 3,5,17,257,65537, .. ..

Theorem 1 (Gauss).

A regular n-gon can be constructed by straightedge and compass if n is a
product of a power of two with a squarefree product of Fermat primes.

Tyler Genao Constructibility and Class Field Theory



Constructible numbers and

Constructibility of a regular 3-gon:
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Constructible numbers and division points

Constructibility of a regular 5-gon (interior to a circle):
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Constructible numbers and division points

Constructibility of a regular 17-gon (cf. Wikipedia):

Pi3 D

Tyler Genao



Constructible numbers and division points

» Recall that the n'th roots of unity are the complex numbers ¢ € C which
satisfy (" = 1.

» Gauss' construction of the regular n-gon involves dividing the unit circle
into n arcs of equal length, the “division points” being the n'th roots of
unity

e>™k/" — cos <ﬂ> + isin (ﬂ>
n n
~ (cos (#) ,sin (#)) eR? k=0,1,...,n—1.

(This tells us that the n’th roots of unity for such n are constructible
numbers.)

» The proof also illustrates that Q(¢,)/Q is an abelian extension, namely
Q(¢r)/Q has abelian Galois group.
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Constructible numbers and division points

» At the beginning of Section 7 in Disquisitiones, Gauss explains that his
methods of proof apply not only to circular functions, but also to other
transcendental functions — functions, like sin and exp, that don’t satisfy
polynomial equations.

» For example, he references transcendental functions which depend on the

integral [ ldX = Such functions are called elliptic functions.
—X

» Inspired by Gauss' work and claim, Abel proved an analogous result for
dividing the arclength of a lemniscate.

~

() F ~ 1.0
X

FiG. 1
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Constructible numbers and division points

» By calculus, if we set

L /1 dx
2 o 0o Vv 1-— X4
then the arclength of our lemniscate is 2L. Compare this to the arclength

27 of the unit circle.

» Abel constructs functions sinlemn(r) and coslemn(r), which give points
on the lemniscate; compare to sin(r) and cos(r), which give points on the
circle.

» Abel shows that sinlemn can be extended to a meromorphic function on
C, and is periodic w.r.t. the complex lattice

Z2L+72Li :={2aL+2bLi: a,b € Z}.

Call such functions elliptic, or doubly periodic.
» Compare this to sin(z) being periodic w.r.t. Z2m.
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Constructible numbers and division points

» Our question is: for what integers n > 0 is sinlemn(2L/n) constructible?
E.g., for what values of n are the n-division points for the lemniscate
constructible?

» Compare to constructible values of sin((27w)/n), e.g. for which n is the
primitive n'th roots of unity ¢, ~» (cos(27/n),sin(27/n)) € S*
constructible?

» Abel proves an analogous result to constructibility of the regular n-gon:

Theorem 2 (Abel’s Theorem).

The arc of a lemniscate can be divided into n equal parts iff n is a product of a
power of 2 and distinct Fermat primes.

» Main takeaway: in Gauss' construction, the “dividing points” of the circle
were the n'th roots of unity, and such division points generate abelian
Galois extensions of Q. Is there a similar interpretation for the “n-division
points” on the lemniscate?

> Yes: as we will see, we can translate constructibility of sinlemn(z) to
constructibility of (z), which will make this a question about n-torsion
points on elliptic curves.
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Weierstrass ¢ functions and torsion on elliptic curves

» Let A be a complex lattice: a discrete rank 2 Z-submodule of C.
» For example, N :=Z+ iZ :={a+ bi : a,b € Z} is the Gaussian integers.

» We define the Weierstrass p-function on C as

o2 = pla ) i= % = |3z~ o

weA

» As it turns out, one has that

1. e is meromorphic on C;

2. p is doubly periodic on the lattice A; so Vw € A, p(z + w) = p(z) for
z € C where g is defined;

3. p and its derivative satisfy an elliptic curve equation

(0')? = 49> — g2 — g3, Where g2 := g2(N), g3 := g3(A) € C.
» One is also afforded a complex-analytic group isomorphism

C/N = EA(C) : y2 =4x° — DX — g3
given by the p-function:

z = (p(2), ¢'(2))-
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Weierstrass ¢ functions and torsion on elliptic curves

Theorem 3.
For a complex number z € C, sinlemn(z) is constructible iff p(z) is
constructible.

> So for us, to check constructibility of sinlemn(2L/n) it suffices to study
the values p(2L/n), and ultimately the n-torsion points on an elliptic
curve.

» With the above isomorphism, the n-torsion points on Ep corresponds to
the n-torsion on the torus C/A:

(C/N)[n:={z€C:n(z+AN)=0+A)} ={zeC:nzeA}.

We observe that (C/A)[n] = 2A/A.
> For example, (C/[1,])[n] = [%, £]/[1,1].

» The conclusion is that the n-torsion of E := Ej for a lattice A = [2L,2Li] is

Eln] = {(p (23L+2bl_l) o <23L+2bL1>) 0<ab< n}.
n n
Observe that o(2L/n) corresponds to the x-coordinate of n-torsion point

(p(2L/n), @' (2L/n)).



Weierstrass ¢ functions and torsion on elliptic curves

» To recap: one has a group isomorphism
exp : (R/27Z,+) = (S, )

by 6 — e®. The n-division points {1, (s, 2, ..., ¢ 1} of our circle
correspond to the n-torsion points of S* as a group, which under this
isomorphism correspond to the n-torsion points {0, 27"7 47" R w} of
R/2n7Z.
> T{ms, the abelian extension Q(¢,)/Q is generated by the n-torsion points on
S
» In the lemniscate case: Abel constructed a function sinlemn periodic w.r.t.
the lattice A := [2L,2Li]. One has sinlemn(z) is constructible iff p(z) is
constructible. Following that, we noted a group isomorphism

(C/[2L,2Li], +) = (Ea,+)

by z — (p(2), ¢'(2)).
» Question: is the extension Q(Ea[n])/Q generated by the n-torsion points
on Ep abelian?

Tyler Genao Constructibility and Class Field Theory



Weierstrass ¢ functions and torsion on elliptic curves

» No.

» BUT: Just as in Gauss' proof of constructibility of the regular n-gon,
Abel's proof essentially constructs an abelian extension replacing Q with
Q(i). Thatis, Q(/)(Ea[n])/Q(i) is abelian.

> For those in the know, observe that Ej; ;= E := Ep; j has complex

multiplication by Z[i] = [1, /] which has class number one. Thus, K := Q(/)
is the Hilbert class field of itself, and Q(E[n])/K = K(E[n])/K.
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Kronecker-Weber, and Kronecker’s Jugendtraum

» Kronecker was greatly inspired by Abel’'s work on n-division points on the
lemniscate, and how it generated an abelian extension of Q(/).

» In the mid 19th century, he announced the proof of a theorem
characterizing abelian extensions of Q.

Theorem 4 (Kronecker-Weber; 1853, 1886, 1896).

Any abelian extension of Q is contained in some cyclotomic field Q((»).

» Kronecker's proof was missing the case where the degree is a power of
two; Weber offered a proof ~30 years later, but it was also incorrect.
Hilbert provided the first complete proof at the end of the 19'th century.
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Kronecker-Weber, and Kronecker’s Jugendtraum

» Also following Abel's work, Kronecker produced abelian extensions for any
imaginary quadratic field using special values of elliptic and modular
functions.

> It was Kronecker’s Jugendtraum (Kronecker’'s dream of youth) that any
abelian extension of any imaginary quadratic field lies in one of the
extensions he created.

» For example, he believed that every abelian extension of Q(/) lied in some

Q(7)(sinlemn(2L/n)).
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Kronecker-Weber, and Kronecker’s Jugendtraum

» What exactly were the abelian extensions of imaginary quadratic K that
Kronecker constructed?

» Recall that SL(Z) is the set of integer matrices with determinant 1.

» Such matrices define linear fractional transformations on the upper half
plane H.

» A modular function is a meromorphic function f : H — C so that f is
“SLy(Z)-invariant”; that is, for any linear fractional transformation
M € SL»(Z) one has

f(M-z)="f(z), Vz € H.

» For those in the know, note that modular functions define functions on
X(1)(C), the moduli space of complex elliptic curves.
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Kronecker-Weber, and Kronecker’s Jugendtraum

» The main example of a modular function is the modular j-invariant
j:H — C, given by
. 1
j(7) := = + 744 4 1968844 + 214937609> + 864299970q° + . ..
q
where g := e>™'".

» The modular j-invariant agrees with the j-invariant of an elliptic curve:
J(7) = j(Ep,m) for any 7 € H.

» Kronecker’s Jugendtraum is that all abelian extensions of an imaginary
quadratic field K are given by adjoining to K special values of the modular
function j(7).

» This statement is still wrong, as one needs special values of both j(7) and
©(z) — these will correspond to both the j-invariant and the n-torsion on an
elliptic curve, respectively.

> The actual abelian extensions of E := E; ;] will be contained in abelian
extensions of K that look like

KG(E), x(E[n]))

where x(E[n]) ~ g (%) are the x-coordinates of the n-torsion points.
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Kronecker-Weber, and Kronecker’s Jugendtraum

» Kronecker noticed some interesting things about the abelian extensions
K(J(E))/K he was creating.
1. The Galois group Gal(K(j(E))/K) is isomorphic to the class group CI(K);
2. K(j(E))/K is an unramified extension;
3. all ideals of K become principal in K(j(E)).

» About a decade later, Hilbert conjectured the following generalization: for
any number field L, there is a unique finite abelian extension L; so that
1. Gal(Ly/L) = CI(L);
2. Ly/L is unramified, and maximal w.r.t. this property;
3. every ideal of L becomes principal in Lg;
4. a prime p of L splits in Ly iff p is principal.

» What is the connection to ramification and splitting?
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Kronecker-Weber, and Kronecker’s Jugendtraum

» In his study of primes, Kronecker conjectured that a Galois extension L of
Q is characterized by how primes p € Z split in L.

> For example, Q(/) is the only Galois extension of Q so that p € Z splits in
Qi) iff p=1 (mod 4).
» It was M. Bauer who proved this in 1903. Let S, /« be the set of prime
ideals of K which split in L.

Theorem 5.
Let L1, L, be Galois extensions of a number field K. Then S, /x C Sy, /k iff
Ly C Ly. In particular, L1 = L; iffSLl/K = SLZ/K-
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Class field theory

» T. Takagi was a Japanese mathematician who, in his 1903 thesis, proved

Kronecker's Jugendtraum for Q(/) using special values of sinlemn, just as
Kronecker had hoped.

» |t was Takagi who also proved the main theorems of general class field
theory, along with contributions from Weber.

» |t involves generalized class groups, and a modulus which will “modulate”
the splitting behavior.
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Class field theory

» For a number field K, a modulus m is an integral ideal of K together with
a squarefree product of real embeddings K — R.

» For example, nZ is a modulus for Q; so is nZ - co, where co : Q < R is the
usual embedding.

» An imaginary quadratic field K has no real embeddings, since the identity
and conjugation embeddings cannot send K into R. So a modulus here is
just an integral ideal of K., e.g. an ideal | C Ok.

» We usually write a modulus as m = moms,, where myg is the integral data

and m is the infinite data.
» Recall that for a number field K, its class group Cl(K) is

_ Z(K)
CIK) = W
where
Z(K) := {Ideals # 0}
and

P(K) := {Principal ideals # 0}.

» This corresponds to the trivial modulus m =1 := O.
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Class field theory

» We will construct more general “m-ideal class groups” as follows.
» Consider the set of nonzero ideals | C K whose prime factorization does

not include any primes which divide m:
In(K) ={I #0C K: V¥p | m v,(/) = 0}.

So Zm(K) is generated by the primes not dividing m.
> T, (K) = Z(K
> For K =Q, Z6Z(Q) = {fractional ideals $Z:61a,6{ b}.

» Next, consider the set of principal ideals with a generator congruent to 1
mod mg and positive under real embeddings. Namely,
Pa(K):={l #0C K: Ja € K so that | = aOk,aa =1 (mod mg)
and Voo | me, co(a) > 0}.
Some facts:

> P1(K) = P(K).
»> For K = Q, we have (2) € P3z(Q) but (3) & P3z(Q).

» Certainly Pu(K) C Zu(K). Their quotient is the m-ideal class group

Clu(K) := i:((i)) .
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Class field theory

» For a number field K and a modulus m in K, call any subgroup
H C Cla(K) a congruence subgroup mod m.

» Congruence subgroups correspond to intermediate subgroups
Pu(K) C Ho C Zn(K). We will interchange H and Hp.

» Each congruence subgroup H contains (an infinite amount of) prime
ideals. As we will see, this will be the splitting information we'll need for
our class fields.

» For a congruence subgroup H, a class field is a finite abelian extension
Kn/K with splitting information the set of primes in H: namely,

p C K splits completely in Ky < p € H.

» Class fields are unique, by Bauer's result.

> As an example, the class field of Ho := P10 (Q) is Q(/), since for a prime
pE€Zonehaspe Hiff p>0and p=1 (mod 4).
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Class field theory

Theorem 6 (Class Field Theory. Takagi, 1920).
Let K be a number field.
1. (Existence) For each congruence subgroup H C Clw(K), there is a class
field for H: namely, a finite abelian extension Kn/K so that

p C K splits completely in Ky < p € H.

2. (Isomorphism) One has G(Ku/K) = H.

3. (Completeness) Any finite abelian extension of K is a class field for some
congruence subgroup H.

4. (Comparison) If Hi, H» C Clw(K), then Ly, C Lu, iff Ho C Hh.
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Class field theory

Class field theory for Q.

» Let us prove the Kronecker-Weber Theorem: every abelian extension of
Q is contained in some cyclotomic field Q(¢,).

> Step 1: The class field for Q of modulus (n)co is the cyclotomic field
Q(Cn)-

» By algebraic number theory, a prime p € Z~q splits in Q(¢n) iff p=1
(mod n).
> Then we observe that p =1 (mod n) iff (p) € P(n)00(Q)-
» So by definition, Q(¢n) is the class field for (n)oo
> Step 2: Let K/Q be abelian. By Class Field Theory, K corresponds to a
congruence subgroup H for some modulus m.
» Any modulus for Q is of the form (n) or (n)co. Note that
(moe(Q) € Py (Q).
> We thus have P(;)o.(Q) € H for some n, so by Comparison we get
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Class field theory

» Following the above, we have an explicit class field theory for Q: for
example, we know that the (n)oo-class fields are the cyclotomic fields

Q(¢n)-
» Such extensions are generated by special values of e on n-torsion
0,20, ..., =Y of R/2Z.

» One also has an explicit class field theory of imaginary quadratic fields K,
described by complex multiplication.

> The m-class fields are generated by special values of j(z) on quadratic
numbers 7 € H and p(z) on n-torsion %, 0<ab<nonC/(Z+7ZT),
for a particular 7.
» Following this theme, for a number field K what other special values of
transcendental functions must we look at to generate class fields for K7

» This is the question of Hilbert's Twelfth Problem. There is much work
to be done on this front.
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Class field theory
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