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I Broadly speaking, class field theory is the study of abelian extensions of
number fields, function fields and local fields, such as Q(i), Fp(t), Qp and
so on.

I We will focus our study on number fields, e.g. finite extensions K of Q.

I We will see that abelian Galois extensions of K can be described by their
arithmetic: namely, the behavior of prime ideals of their number rings.

I Explicit class field theory (describing all abelian extensions explicitly) is
usually very hard, but we will see some of this for Q and imaginary
quadratic fields.
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I During antiquity, geometry saw important development from many
Ancient Greece mathematicians, like Pythagoras and Euclid.

I Their interests in geometry included straightedge and compass
constructions: what geometric objects (lengths, angles, polygons) can be
constructed using only an idealized straight line, and a compass?
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I How to play this game:

I Start with the points (0, 0) and (1, 0) in R2. In straightedge and compass
constructions, one can only use the following basic constructions on
pre-existing points, lines and circles:

1. Create an infinite line through two distinct points; (straightedge)
2. For two distinct points, draw a circle centered at one which contains the

other; (compass)
3. determine the points of intersection between two distinct lines, a line and a

circle, or two distinct circles. (determination)

I Given these rules, what types of points can we determine in a finite
amount of steps?

I Call such points constructible, and the polygons made from such points
constructible polygons.

I Call a number a ∈ R a constructible number if there is a constructible
point with x or y -coordinate equal to a.
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Constructibility of N:
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Constructibility of 1
2

(bisecting lines is constructible):
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Perpendicular lines to a constructible point are constructible:
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Constructibility of
√

2:
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I Let us extend constructibility to C: call x + iy ∈ C a constructible
number if (x , y) ∈ R2 is a constructible point.

I The set F ⊆ C of constructible numbers is a field; so if a, b are
constructible then so are a± b, ab, a/b.

I F is also closed under taking square roots.
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I More than a millennium after Greek antiquity, Gauss publishes the
Disquisitiones Arithmeticae (or Higher Arithmetic), notable for making
rigorous the field of number theory. (It also started the format
Theorem-Proof -Corollary for textbooks.)

I Although concerning itself in large part with modular arithmetic, the last
section focuses on ”equations defining a circle.”

I It was in this section that Gauss was able to show the following:
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I Recall that Fermat primes are primes of the form Fr := 22r + 1 where
r ≥ 0.
I The first few Fermat primes are 3, 5, 17, 257, 65537, . . ..

Theorem 1 (Gauss).

A regular n-gon can be constructed by straightedge and compass if n is a
product of a power of two with a squarefree product of Fermat primes.
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Constructibility of a regular 3-gon:
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Constructibility of a regular 5-gon (interior to a circle):
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Constructibility of a regular 17-gon (cf. Wikipedia):
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I Recall that the n’th roots of unity are the complex numbers ζ ∈ C which
satisfy ζn = 1.

I Gauss’ construction of the regular n-gon involves dividing the unit circle
into n arcs of equal length, the “division points” being the n’th roots of
unity

e2πik/n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
 

(
cos

(
2πk

n

)
, sin

(
2πk

n

))
∈ R2, k = 0, 1, . . . , n − 1.

(This tells us that the n’th roots of unity for such n are constructible
numbers.)

I The proof also illustrates that Q(ζn)/Q is an abelian extension, namely
Q(ζn)/Q has abelian Galois group.
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I At the beginning of Section 7 in Disquisitiones, Gauss explains that his
methods of proof apply not only to circular functions, but also to other
transcendental functions – functions, like sin and exp, that don’t satisfy
polynomial equations.
I For example, he references transcendental functions which depend on the

integral
∫

dx√
1−x4

. Such functions are called elliptic functions.

I Inspired by Gauss’ work and claim, Abel proved an analogous result for
dividing the arclength of a lemniscate.
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I By calculus, if we set
L

2
:=

∫ 1

0

dx√
1− x4

then the arclength of our lemniscate is 2L. Compare this to the arclength
2π of the unit circle.

I Abel constructs functions sinlemn(r) and coslemn(r), which give points
on the lemniscate; compare to sin(r) and cos(r), which give points on the
circle.

I Abel shows that sinlemn can be extended to a meromorphic function on
C, and is periodic w.r.t. the complex lattice

Z2L + Z2Li := {2aL + 2bLi : a, b ∈ Z}.

Call such functions elliptic, or doubly periodic.
I Compare this to sin(z) being periodic w.r.t. Z2π.
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I Our question is: for what integers n > 0 is sinlemn(2L/n) constructible?
E.g., for what values of n are the n-division points for the lemniscate
constructible?

I Compare to constructible values of sin((2π)/n), e.g. for which n is the
primitive n’th roots of unity ζn  (cos(2π/n), sin(2π/n)) ∈ S1

constructible?

I Abel proves an analogous result to constructibility of the regular n-gon:

Theorem 2 (Abel’s Theorem).

The arc of a lemniscate can be divided into n equal parts iff n is a product of a
power of 2 and distinct Fermat primes.

I Main takeaway: in Gauss’ construction, the “dividing points” of the circle
were the n’th roots of unity, and such division points generate abelian
Galois extensions of Q. Is there a similar interpretation for the “n-division
points” on the lemniscate?

I Yes: as we will see, we can translate constructibility of sinlemn(z) to
constructibility of ℘(z), which will make this a question about n-torsion
points on elliptic curves.
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I Let Λ be a complex lattice: a discrete rank 2 Z-submodule of C.
I For example, Λ := Z + iZ := {a + bi : a, b ∈ Z} is the Gaussian integers.

I We define the Weierstrass ℘-function on C as

℘(z) := ℘(z ,Λ) :=
1

z2
−
∑
w∈Λ

[
1

w 2
− 1

(z − w)2

]
.

I As it turns out, one has that
1. ℘ is meromorphic on C;
2. ℘ is doubly periodic on the lattice Λ; so ∀w ∈ Λ, ℘(z + w) = ℘(z) for

z ∈ C where ℘ is defined;
3. ℘ and its derivative satisfy an elliptic curve equation

(℘′)2 = 4℘3 − g2℘− g3, where g2 := g2(Λ), g3 := g3(Λ) ∈ C.

I One is also afforded a complex-analytic group isomorphism

C/Λ
∼−→ EΛ(C) : y 2 = 4x3 − g2x − g3

given by the ℘-function:

z 7→ (℘(z), ℘′(z)).
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Theorem 3.
For a complex number z ∈ C, sinlemn(z) is constructible iff ℘(z) is
constructible.

I So for us, to check constructibility of sinlemn(2L/n) it suffices to study
the values ℘(2L/n), and ultimately the n-torsion points on an elliptic
curve.

I With the above isomorphism, the n-torsion points on EΛ corresponds to
the n-torsion on the torus C/Λ:

(C/Λ)[n] := {z ∈ C : n(z + Λ) = (0 + Λ)} = {z ∈ C : nz ∈ Λ}.

We observe that (C/Λ)[n] = 1
n

Λ/Λ.

I For example, (C/[1, i ])[n] = [ 1
n
, i
n

]/[1, i ].

I The conclusion is that the n-torsion of E := EΛ for a lattice Λ = [2L, 2Li ] is

E [n] =

{(
℘

(
2aL + 2bLi

n

)
, ℘′
(

2aL + 2bLi

n

))
: 0 ≤ a, b < n

}
.

Observe that ℘(2L/n) corresponds to the x-coordinate of n-torsion point
(℘(2L/n), ℘′(2L/n)).
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I To recap: one has a group isomorphism

exp : (R/2πZ,+)
∼−→ (S1, ·)

by θ 7→ e iθ. The n-division points {1, ζn, ζ2
n , . . . , ζ

n−1
n } of our circle

correspond to the n-torsion points of S1 as a group, which under this

isomorphism correspond to the n-torsion points {0, 2π
n
, 4π

n
. . . , 2π(n−1)

n
} of

R/2πZ.
I Thus, the abelian extension Q(ζn)/Q is generated by the n-torsion points on

S1.

I In the lemniscate case: Abel constructed a function sinlemn periodic w.r.t.
the lattice Λ := [2L, 2Li ]. One has sinlemn(z) is constructible iff ℘(z) is
constructible. Following that, we noted a group isomorphism

(C/[2L, 2Li ],+)
∼−→ (EΛ,+)

by z 7→ (℘(z), ℘′(z)).

I Question: is the extension Q(EΛ[n])/Q generated by the n-torsion points
on EΛ abelian?
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I No.
I BUT: Just as in Gauss’ proof of constructibility of the regular n-gon,

Abel’s proof essentially constructs an abelian extension replacing Q with
Q(i). That is, Q(i)(EΛ[n])/Q(i) is abelian.
I For those in the know, observe that E[L,Li ]

∼= E := E[1,i ] has complex

multiplication by Z[i ] = [1, i ] which has class number one. Thus, K := Q(i)
is the Hilbert class field of itself, and Q(E [n])/K = K(E [n])/K .
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I Kronecker was greatly inspired by Abel’s work on n-division points on the
lemniscate, and how it generated an abelian extension of Q(i).

I In the mid 19th century, he announced the proof of a theorem
characterizing abelian extensions of Q.

Theorem 4 (Kronecker-Weber; 1853, 1886, 1896).

Any abelian extension of Q is contained in some cyclotomic field Q(ζn).

I Kronecker’s proof was missing the case where the degree is a power of
two; Weber offered a proof ∼30 years later, but it was also incorrect.
Hilbert provided the first complete proof at the end of the 19’th century.
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I Also following Abel’s work, Kronecker produced abelian extensions for any
imaginary quadratic field using special values of elliptic and modular
functions.

I It was Kronecker’s Jugendtraum (Kronecker’s dream of youth) that any
abelian extension of any imaginary quadratic field lies in one of the
extensions he created.

I For example, he believed that every abelian extension of Q(i) lied in some
Q(i)(sinlemn(2L/n)).
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I What exactly were the abelian extensions of imaginary quadratic K that
Kronecker constructed?

I Recall that SL2(Z) is the set of integer matrices with determinant 1.
I Such matrices define linear fractional transformations on the upper half

plane H.

I A modular function is a meromorphic function f : H→ C so that f is
“SL2(Z)-invariant”; that is, for any linear fractional transformation
M ∈ SL2(Z) one has

f (M · z) = f (z), ∀z ∈ H.

I For those in the know, note that modular functions define functions on
X (1)(C), the moduli space of complex elliptic curves.
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I The main example of a modular function is the modular j-invariant
j : H→ C, given by

j(τ) :=
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + . . .

where q := e2πiτ .

I The modular j-invariant agrees with the j-invariant of an elliptic curve:
j(τ) = j(E[1,τ ]) for any τ ∈ H.

I Kronecker’s Jugendtraum is that all abelian extensions of an imaginary
quadratic field K are given by adjoining to K special values of the modular
function j(τ).
I This statement is still wrong, as one needs special values of both j(τ) and
℘(z) – these will correspond to both the j-invariant and the n-torsion on an
elliptic curve, respectively.

I The actual abelian extensions of E := E[1,τ ] will be contained in abelian
extensions of K that look like

K(j(E), x(E [n]))

where x(E [n]) ℘
(

a+bτ
n

)
are the x-coordinates of the n-torsion points.
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I Kronecker noticed some interesting things about the abelian extensions
K(j(E))/K he was creating.

1. The Galois group Gal(K(j(E))/K) is isomorphic to the class group Cl(K);
2. K(j(E))/K is an unramified extension;
3. all ideals of K become principal in K(j(E)).

I About a decade later, Hilbert conjectured the following generalization: for
any number field L, there is a unique finite abelian extension L1 so that

1. Gal(L1/L) ∼= Cl(L);
2. L1/L is unramified, and maximal w.r.t. this property;
3. every ideal of L becomes principal in L1;
4. a prime p of L splits in L1 iff p is principal.

I What is the connection to ramification and splitting?
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I In his study of primes, Kronecker conjectured that a Galois extension L of
Q is characterized by how primes p ∈ Z split in L.
I For example, Q(i) is the only Galois extension of Q so that p ∈ Z splits in

Q(i) iff p ≡ 1 (mod 4).

I It was M. Bauer who proved this in 1903. Let SL/K be the set of prime
ideals of K which split in L.

Theorem 5.
Let L1, L2 be Galois extensions of a number field K. Then SL1/K ⊆ SL2/K iff
L2 ⊆ L1. In particular, L1 = L2 iff SL1/K = SL2/K .
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I T. Takagi was a Japanese mathematician who, in his 1903 thesis, proved
Kronecker’s Jugendtraum for Q(i) using special values of sinlemn, just as
Kronecker had hoped.

I It was Takagi who also proved the main theorems of general class field
theory, along with contributions from Weber.

I It involves generalized class groups, and a modulus which will “modulate”
the splitting behavior.
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I For a number field K , a modulus m is an integral ideal of K together with
a squarefree product of real embeddings K ↪→ R.
I For example, nZ is a modulus for Q; so is nZ · ∞, where ∞ : Q ↪→ R is the

usual embedding.
I An imaginary quadratic field K has no real embeddings, since the identity

and conjugation embeddings cannot send K into R. So a modulus here is
just an integral ideal of K ., e.g. an ideal I ⊆ OK .

I We usually write a modulus as m = m0m∞, where m0 is the integral data
and m∞ is the infinite data.

I Recall that for a number field K , its class group Cl(K) is

Cl(K) :=
I(K)

P(K)

where
I(K) := {Ideals 6= 0}

and
P(K) := {Principal ideals 6= 0}.

I This corresponds to the trivial modulus m = 1 := OK .
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I We will construct more general “m-ideal class groups” as follows.

I Consider the set of nonzero ideals I ⊆ K whose prime factorization does
not include any primes which divide m:

Im(K) := {I 6= 0 ⊆ K : ∀p | m vp(I ) = 0}.

So Im(K) is generated by the primes not dividing m.
I I1(K) = I(K).
I For K = Q, I6Z(Q) = {fractional ideals a

b
Z : 6 - a, 6 - b}.

I Next, consider the set of principal ideals with a generator congruent to 1
mod m0 and positive under real embeddings. Namely,

Pm(K) := {I 6= 0 ⊆ K : ∃α ∈ K so that I = αOK , α ≡ 1 (mod m0)

and ∀∞ | m∞ ∞(α) > 0}.

Some facts:
I P1(K) = P(K).
I For K = Q, we have (2) ∈ P3Z(Q) but (3) 6∈ P3Z(Q).

I Certainly Pm(K) ⊆ Im(K). Their quotient is the m-ideal class group

Clm(K) :=
Im(K)

Pm(K)
.
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I For a number field K and a modulus m in K , call any subgroup
H ⊆ Clm(K) a congruence subgroup mod m.
I Congruence subgroups correspond to intermediate subgroups
Pm(K) ⊆ H0 ⊆ Im(K). We will interchange H and H0.

I Each congruence subgroup H contains (an infinite amount of) prime
ideals. As we will see, this will be the splitting information we’ll need for
our class fields.

I For a congruence subgroup H, a class field is a finite abelian extension
KH/K with splitting information the set of primes in H: namely,

p ⊆ K splits completely in KH ⇔ p ∈ H.

I Class fields are unique, by Bauer’s result.

I As an example, the class field of H0 := P(4)∞(Q) is Q(i), since for a prime
p ∈ Z one has p ∈ H iff p > 0 and p ≡ 1 (mod 4).
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Theorem 6 (Class Field Theory. Takagi, 1920).

Let K be a number field.

1. (Existence) For each congruence subgroup H ⊆ Clm(K), there is a class
field for H: namely, a finite abelian extension KH/K so that

p ⊆ K splits completely in KH ⇔ p ∈ H.

2. (Isomorphism) One has G(KH/K) ∼= H.

3. (Completeness) Any finite abelian extension of K is a class field for some
congruence subgroup H.

4. (Comparison) If H1,H2 ⊆ Clm(K), then LH1 ⊆ LH2 iff H2 ⊆ H1.
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Class field theory for Q.
I Let us prove the Kronecker-Weber Theorem: every abelian extension of

Q is contained in some cyclotomic field Q(ζn).
I Step 1: The class field for Q of modulus (n)∞ is the cyclotomic field

Q(ζn).
I By algebraic number theory, a prime p ∈ Z>0 splits in Q(ζn) iff p ≡ 1

(mod n).
I Then we observe that p ≡ 1 (mod n) iff (p) ∈ P(n)∞(Q).
I So by definition, Q(ζn) is the class field for (n)∞.

I Step 2: Let K/Q be abelian. By Class Field Theory, K corresponds to a
congruence subgroup H for some modulus m.

I Any modulus for Q is of the form (n) or (n)∞. Note that
P(n)∞(Q) ⊆ P(n)(Q).

I We thus have P(n)∞(Q) ⊆ H for some n, so by Comparison we get
QH = K ⊆ Q(n)∞ = Q(ζn). QED.
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I Following the above, we have an explicit class field theory for Q: for
example, we know that the (n)∞-class fields are the cyclotomic fields
Q(ζn).
I Such extensions are generated by special values of ez on n-torsion

0, 2π
n
, . . . ,

2π(n−1)
n

of R/2πZ.

I One also has an explicit class field theory of imaginary quadratic fields K ,
described by complex multiplication.
I The m-class fields are generated by special values of j(z) on quadratic

numbers τ ∈ H and ℘(z) on n-torsion a+bτ
n

, 0 ≤ a, b < n on C/(Z + Zτ),
for a particular τ .

I Following this theme, for a number field K what other special values of
transcendental functions must we look at to generate class fields for K?

I This is the question of Hilbert’s Twelfth Problem. There is much work
to be done on this front.
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