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1 Background

In the Seminar Bourbaki article [5], Deligne used the Chowla—Selberg formula [2] to eval-
uate the stable Faltings height of an elliptic curve with complex multiplication by the ring
of integers O of an imaginary quadratic field K in terms of Euler’'s Gamma function I'(s)
at rational arguments. He then used this result to calculate the minimum value attained
by the stable Faltings height. In this paper, we will establish a similar formula for both
the unstable and stable Faltings height of an elliptic curve with complex multiplication
by any order in K (not necessarily maximal). We illustrate these results by explicitly eval-
uating the Faltings height of an elliptic curve over Q with complex multiplication by a
non-maximal order (see Sect. 2).

We begin by recalling the definition of the (unstable) Faltings height of an elliptic curve,
following ([12], Chapter IV, Sect. 6). Let L be a number field with ring of integers O;.
Let E/L be an elliptic curve over L, and let £/O} be a Néron model for E/L. Let Q¢,0,
be the sheaf of Néron differentials, and let s*Q¢,0, be the pullback by the zero section
s : Spec(Or) — E. Choose a differential v € H°(E/L, Qg/1). Then the Faltings height of
E/L is defined by

. lOg(#(S*Qg/oL/OLa))) _ 1 i o
healE/L) = [L:Ql 2L Q) a;cl"g(z fm@w ne )

The definition of the Faltings height given here is normalized as in Silverman [16] (who
in turn uses the same normalization as Faltings [6, p. 14]).

To state our main results, we fix the following notation. Let K be an imaginary quadratic
field of discriminant D with ideal class group CI(D), unit group O, and Kronecker symbol
xp-. Let i(D) = #CI(D) be the class number and wp = #(91? be the number of units. For an

elliptic curve E/L, let Ay be the minimal discriminant ideal and j(E) be the j-invariant.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

@ Springer O pen provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
— indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-017-0077-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Barquero-Sanchez et al. Res. Number Theory(2017)3:13 Page 2 of 16

Theorem 1.1 Let E/L bean elliptic curve with complex multiplication by an order Oy C K
of conductor f € Z* and discriminant A =f 2D. Assume that the coefficients of the
Weierstrass equation for E/L are contained in Q(j(E)). Then the Faltings height of E/L is

given by
1/2
A
explhea(E/L)] = Npjg(Ag )Y/ <\/7)
ID| k \ ~xoKwp/4h(D) o2
e
gt (H) [177
=1 rIf
where
1 — pordp(y(1 —
o(p) = L2 — o)

T D1 = p) (o) — p)

Remark 1.2 Our assumption that the coefficients of the Weierstrass equation for E/L be
contained in Q(j(E)) is used crucially in the proof of Proposition 6.1, which is an important
component in the proof of Theorem 1.1. This hypothesis can be removed if we instead
work with the stable Faltings height, which we do in Theorem 1.3.

If I is a finite extension of L, then it is not necessarily true that /g, (E/L) = hp(E/L).
However, if an elliptic curve over a number field has everywhere semistable reduction,
then the Faltings height is invariant under finite field extensions. This leads one to define
the stable Faltings height of E/L by

hEaP (E/L) = hea(E/L),
where L’ is any finite extension of L such that E/L’ has everywhere semistable reduction.

Theorem 1.3 Let E/L bean elliptic curve with complex multiplication by an order Oy C K
of conductor f € Z" and discriminant Ay = f2D. Then the stable Faltings height of E /L is
given by

) JEA\2 B g\ —rotkwn/4h0) ,
explhgy (E/L)] = — ]_[r( ) 172

k=1 DI
= plf

Remark 1.4 'We now briefly explain how Theorem 1.3 can be used to recover Deligne’s
evaluation of the stable Faltings height in the case that E/L has complex multiplication by
the maximal order O in K. Since Ok has conductor f = 1, by Theorem 1.3 we have

1/2 |D| —xp(k)wp /4h(D)
D
V] |> HF<’<> ' 1.1)

stab _ (M -~
explf2h e/ = (¥ I (35

Now, Deligne [5, p. 27] defined a different normalization of the stable Faltings height
which he called the geometric height of E and denoted by /igeom (E). It can be shown that

1
Hgeom(E) = K22 (E/L) + 5 log . 1.2)
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Deligne [5, p. 29] then observed that the Chowla—Selberg formula [2] can be used to
establish the identity

1 DI

) k \ x0Kwp/2h(D)
exp[hgeom(E)]_ = ﬁ 1_[ r (ﬁ) . (1.3)
k=1

By substituting the evaluation of hi;t:lb(E /L) from (1.1) into (1.2), we recover Deligne’s
result (1.3).

An important component in the proof of Theorem 1.1 is a Chowla—Selberg formula for
any order in K. An arithmetic-geometric proof of such a formula was given by Nakkajima
and Taguchi [13] by employing a theorem of Faltings which relates the Faltings heights
of two isogenous abelian varieties. Kaneko briefly outlined an analytic approach to the
same formula in the research announcement [7]. Here we give a detailed analytic proof
of a Chowla—Selberg formula for orders in K. This proof is based on a renormalized
Kronecker limit formula for the non-holomorphic Eisenstein series on SLy(Z), a period
formula which relates the zeta function of an order in K to values of the Eisenstein series at
CM points corresponding to classes in the ideal class group of the order, and a factorization
of the zeta function of an order given by Zagier [19], and in an equivalent but different
form by Kaneko [7].

2 Examples

In this section, we use Theorems 1.1 and 1.3, and SageMath [14] to evaluate the unstable
and stable Faltings height of an elliptic curve over Q with complex multiplication by a
non-maximal order.

Example 2.1 Let K = Q(+/—7) be the imaginary quadratic field of discriminant D = —7.
Let Ox = Z [H*TE] be the ring of integers, and let

Oy =Z+20g =7Z[1 + ~/—7]

be the order of conductor f = 2 in K. Let A = 255 and consider the elliptic curve (see [8,
Eq. (2.2)))

EA/Q:y? = x> — 3A(A% — 1728)x — 2(A% — 1728)%

The elliptic curve E4/Q has complex multiplication by the non-maximal order O, and

the minimal discriminant ideal is
Ap o = (3%-7°-19%)Z.

Moreover, the j-invariant of E4 /Q is j = A% = 2553,
We now use Theorems 1.1 and 1.3 to evaluate the unstable and stable Faltings height of

Ex/Q.
Since the discriminant of K is D = —7 and the conductor of the order O, is f = 2,
we have Ay = —28. Also, w_7 = 2 and h(—7) = 1. The Kronecker symbol values are
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x—7(k) = 1fork = 1,2,4 and x_7(k) = —1 for k = 3,5, 6. The only prime p|f is p = 2,
and we have

A-90-x7@)

@=L -2

Then since the Weierstrass equation defining E4/Q has coefficients in Q(j) = Q, by
Theorem 1.1 the Faltings height of E4/Q is given by

12 7 —x-7(0)/2
explhra(Ea/Q)] = No/o(Ag, 0) " <ﬁ> l_[ r (li) )

T 7
k=1

After further simplification, we get

1/2
explhpa(Ea/Q)] = 31274191/ (2\/7) (F(3/7)F(5/7)F(6/7)>1/2.

T I'(1/7)[(2/7)['(4/7)

Similarly, using the preceding computations, by Theorem 1.3 the stable Faltings height
of E4/Q is given by

172 172
stab _(2v7 I'(3/7)T(5/7)I'(6/7)
expllar (Ea/ Q)]_( ) (F(1/7)r<2/7)r(4/7)) '

Numerically, the values of the Faltings heights computed above are /gy (Ex/Q) ~
1.56896083514163 and h;t:lb(EA/Q) ~ —0.939042336039478.
Now, let L = Q(+/7) and

u= 1197 — 456+/7 € L* ~ L*2

Let E4 /L denote the base change of E4/Q to L (given by the same Weierstrass equation).

Then the quartic twist of E4 /Q by u is the elliptic curve!

E%/L(Vu) : y* = 2% — 3A(A3 — 1728)u’x — 2(A% — 1728)%u3

over the quartic number field L(\/u) = Q(v' 1197 — 456+/7). Note that the quartic twist
E%/L(J/u) of E4/Q is precisely the quadratic twist by u = 1197 — 456+/7 of the base
change E4 /L.

The minimal discriminant ideal of E% /L(/u) is

Ap i) = Oy

hence the quartic twist E% /L(\/u) has everywhere good reduction. It follows that the stable
Faltings height of E4/Q is given by

B2 (Eq /Q) = hpa(E% /L(VW)).

However, since the coefficients of the Weierstrass equation of E /L(+/u) are not contained
in Q) = Q, we cannot apply Theorem 1.1 directly to evaluate the Faltings height of
E%/L(J/u). This demonstrates the usefulness of Theorem 1.3 in evaluating the stable
Faltings height of a CM elliptic curve.

!The elliptic curve E4 and its quartic twist E% are taken from the third entry in [8, Table 3, p. 556].
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3 The Kronecker limit formula
In this section, we briefly recall a renormalized version of the Kronecker (first) limit
formula. Let H denote the complex upper half-plane and define the group

oo = {j: ((1) ';) ‘ne Z} < SLy(2).

Then the non-holomorphic Eisenstein series on SLy(Z) is defined by

E(zs) := Z Im(Mz)’, z=wx+iyeH, Re(s)> 1
MEeTo,\SLy(Z)

The Eisenstein series has the well-known Fourier expansion (see e.g. [9, Theorem 9.9

(2), p- 32])
{(2s -1
E(zs) = J’”r\/_ 2
4
F(s)§(2s)fzal 2s(m)n*~ 21<S_7(27Tny) cos(2m nx),

where I'(s) is Euler’s Gamma function, ¢ (s) is the Riemann zeta function, oy (1) := Y tn ok
is the k-divisor function, and K, is the K-Bessel function of order v. The Fourier expansion
shows that E(z, s) extends to a meromorphic function on C with a simple pole at s = 1.

Lets — (s+ 1)/2 in the Fourier expansion of E(z, s) and calculate the Taylor expansion
of the shifted Eisenstein series E(z, (s + 1)/2) at s = —1 to get

E(z(s+1)/2)=1+ (log(ﬁ) — %y — 22 JIT(n)e_Z””y cos(2nnx)) (s+1)
n=1
+0((s + 1)%.

Now, recall that the Dedekind eta function is the weight 1/2 modular form for SL,(7Z)
defined by the infinite product

00
77(2) — q1/24 l_[(l _ qn), q:= eZniz} z el

n=1

Then using the identity (see e.g. [10, p. 274])

log(7In(@)I*) = log(y/») = =y =2 "17(”’(3—2”@ cos(2mnz),
n=1

one gets the following renormalized version of the Kronecker limit formula,
E(z (s +1)/2) = 14 log(F(2))(s + 1) + O((s + 1)%), (3.1)
where F(z) is the SLy(Z)-invariant function defined by

F(z) == v/Im(2)In(z)| (3.2)

Page 50f 16
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4 Zeta functions of orders and CM values of Eisenstein series

In this section, we relate the zeta function of an order in an imaginary quadratic field to
values of the Eisenstein series E(z, s) at CM points corresponding to classes in the ideal
class group of the order.

We begin by recalling some facts regarding orders in imaginary quadratic fields (see e.g.
Cox [3, Sect. 7]). Let K be an imaginary quadratic field of discriminant D. Given f € Z¥,
let Or be the (unique) order of conductor f in K. A fractional Oy-ideal a is a subset of K
which is a non-zero finitely generated Or-module. A fractional O¢-ideal a is proper if

O ={B€K:pacCal

It is known that a fractional Oy-ideal is invertible if and only if it is proper (see [3, Proposi-
tion 7.4]). Accordingly, let I(Oy) be the group of proper fractional Oy-ideals, and let P(Oy)
be the subgroup of I(Oy) consisting of principal fractional Oy-ideals. The ideal class group
of Oy is defined as the quotient group

COy) = 1(Of)/P(O)).

Let h(Of) = # Cl(Or) be the class number of O.
The Dedekind zeta function of Oy is defined by

1
g“of(s) = Z ——, Re(s) > 1.
N(a)®
ueI((’)f)
aCOf

Similarly, given an ideal class A € Cl(Oy), we define the ideal class zeta function by

Za(s) = Z ]\%’ Re(s) > 1.

1A
ICOf

Then we have the decomposition

Co/s) =Y als).

AeCI(0)

Now, the discriminant of Oy is given by As = f2D. By [3, Theorem 7.7], we may choose
a proper integral ideal a € A with

—-b+ /A
u:Zﬂ'i'Z(Tf)

where [4, b, c](X, Y) = aX?+bXY +cY? isa quadratic form of discriminant b* —4ac = Ay
with (@, b,¢) = 1and a = N(a) > 0.
For o € K, let o’ denote the image of & under the nontrivial automorphism of K. Then

b+ JA
a’:ZsH—Z(Tf),
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Moreover, by [3, Eq. (7.6)] we have a™! = L/, and thus

a

b+ /A
“l=7+7 (—f) =7+ Zzg (4.1)
2a
where
b+ /A
o2 T
2a

is the root in the complex upper half-plane of the dehomogenized form [a, —b, c](X, 1) =
aX? —bX +c.
Let (’)fx be the group of units in O, and let wy = #(’)fx.

Proposition 4.1 With notation as above, we have

2 <—V|2Af|) £(29)E(zq-1, 5).

We will need the following lemma.

Lemma 4.2 Let a be a proper fractional Og-ideal. Then the map
¢: (@ \(0)/Of — {I€la]: I COff
defined by ¢([«]) = «a is a bijection.

Proof We first prove that the map ¢ is well-defined. Observe thatifa € a~!, thenaa C Or
since a”la = Or. Next, observe that if [@] = [B], then @ = Bu for some unit u € OfX. It
follows that Oy = BuOy = B0y, and hence ca = Ba.

To prove that ¢ is injective, suppose that@a = fa. Then aaa™! = Baa~!, which implies
that Oy = B0, or equivalently, that [«] = [B].

To prove that ¢ is surjective, suppose that / € [a] with I C Oy. Then I = «aa for some

a € K*, or equivalently, Ia~! = aO. Since I is integral, we have Ja~! C a™!, so that

o €al. Then[a] € (a7 1\ {O})/(’)Ji< with ¢([a]) = a = 1. ]
We now prove Proposition 4.1.
Proof of Proposition 4.1 Using Lemmas (4.2) and (4.1), we get

1 1
@i = Ny 2 N(aa)

Iela] O;éaea_l/OfX

ICOf
75 L
- Ny N(a)
O;aéozea‘l/OfX
1 1
as Z |a|2s
O#OCEC[_I/O;

1 1
= S Z 2s
e (0,0)£(m,n)eZ2 I+ nzq|
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1 (AT (VIATY 5 1
2 2a 00) |m + nzg-1]%

S

,0) £ (m,n)eZ2
1 <\/|Af|)s Im(z,-1)°
=\ Yo 1y 125"
wy 2 (00} ()22 |m + nz 1|
2 [.J1A
= — (M) C(28)E(z4-1, 5),
wy 2

where for the last equality we used the following well-known identity (see e.g. [4, Propo-
sition 2.7.6 (a), p. 55])

1 Im(z)$
25)E(z,s) = — _
(@EG@s) =5 D] P
(0,0)#(m,n)eZ2

5 A Chowla-Selberg formula for imaginary quadratic orders
In this section, we will prove the following result.

Theorem 5.1 With notation as in Sect. 4, we have

1 h(OF)/2 |D| &\ xo®wph(Of)/4h(D)
[ Fea)= ]‘[r(-)
“ ar /1A D

[a]eCl(Oy) k=1

% 1—[ PO/,
plf

where F(z) is defined by (3.2), z;—1 is a CM point as in (4.1), and

(1= po (1 - xop)

e(p) = o N-1(1 — p)(xp(p) —

(5.1)

Before proving Theorem 5.1, we illustrate how it can be used to evaluate the Dedekind
eta function 7(z) at CM points.

Example 5.2 Let K = Q(i), and consider the order of conductor f = 2 in K given by
Oy =7+ 27Z[i] =7 + 7.2i.
Since the discriminant of K is D = —4, the discriminant of Oy is Ay = 2%(—4) = —16.

Also, h(—4) = 1 and w_4 = 4. We have h(O,) = 1, so that CI(O;) = {[{O]}. Then since
(’)2_1 = Oy = 7Z + 7Z2i, from (4.1) we can take Zo;1 = 2i for the CM point. It follows that

[[ Flat)=Flzp) = FQi) = VIm@) @)1 = v2In(2i)

[a]eCl(O2)
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On the other hand, we have

1 h(0Oy)/2 4 k X—a(k)w_4h(O2)/4h(—4)
- r(z
<47T V1A3] ) H (4 > H

k=1
4 _a(k)
1 K\ X a(
=—1]r(> 272,
=10 (3)

Therefore, by Theorem 5.1 we get

pI2

V2P = — T ()Y e
2m@))* = —=]]r <—> 2@/,
sz L \a

p*e(zl)h((?z)/2

(5.2)

Now, the values of the Kronecker symbol are x_4(1) = 1, x_4(2) = 0, x—4(3) = —1, and

X—4(4) = 0. The only prime p|f is p = 2, and we have

1-2)1 - x4@) 1

e(2)

T 21— 9@ -2 2
Then after expanding the product in (5.2), we get

r(1/4)

VRO = S vy

Using the reflection formula

r@ral-z) = —
sin(z)
with z = 1/4 yields
I'(3/4) = 2= 1
C V214

Then substituting in (5.3) gives

, 1
In(i)* = WF(I/‘L)Z,

Finally, since 1(2i) is a positive real number, we get

) 1
n(2i) = WF(IM)'

(5.3)

(5.4)

We used SageMath [14] to compute that both sides of (5.4) are ~0.592382781332416,

which serves as a numerical verification of Theorem 5.1.

Proof of Theorem 5.1 By Proposition 4.1, we have

2

—(s+1)/2
JIA
Sa) (s +1)/2) = 2 (M> ¢(s+ DE (zq-1, (s +1)/2).

wf

Page 9 of 16
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Then summing over all ideal classes in C1(Oy) yields

—(s+1)/2
A
fo, (5+1)/2) = w% (—V'f') (4 1)

> Y Eeu(+1)/2). (55

[a]eCl(0y)

For convenience, define the function

w (W )““’/ g0, (6 +1)/2)

go,9) = - | Y- G

2

Then (5.5) can be written as

go;8)= > Elzg1,(s+1)/2). (5.6)
[a]eCL(Oy)

Now, using the Kronecker limit formula (3.1), we compare Taylor expansions ats = —1
on both sides of (5.6) to get

go,(~) =Y log(F(zg)),

[a]eCl(0y)

or equivalently,

[T Flea) = explgo, (-1 (5.7)

[a]eCl(Oy)

Therefore, we must evaluate géO/ (=1).
Our starting point is the factorization (see e.g. [1, Proposition 10.18 (2)])

COf (S) = C(S)Lf(S)L(XD, S)}

where

—pS — —s) _ »ordy(f)(1-2s)—1¢1 _ ,1-s I
Ly = [] L2 = 0l™) - (1= )00 P

plf
We use this factorization to write

_w (v'Aﬂ)(SH)/Z ¢ (s +1)/2)
o9 ="2 (V) LD

2 oty L HD2LGD s+ 1)/2).

Now, a calculation with the product rule yields

A y 4 L¢(0)
J fl)_:(0)+L(xD,0)+ 7 )

2 ¢(0)  L(xp,0)  Ls(0)

’ wr
g0, (=1) = Ly (OL(xp, 0) | log

To further simplify this identity, we note that

X/;(p))‘

Ls(0) =fl_[ <1 -
plf
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Then using Dirichlet’s class number formula

L(xp, 0) = 2];(1?), (5.8)

the identity (see e.g. [3, Theorem 7.24])

h(D)f ( XD(P))
wop) = —2Y__17(1- 222,
(Or) [O;‘Of]g »

and [Of : Ofx] = wp/wy, we get

w hOy)
L L{OL(p, 0) = =
It follows that
o _mop [ (VIET ) | L0 | LO)
go, (-1 = —; (log( 2 >_c(0)+L(XD,0) Ls(0) )" )

We now evaluate the logarithmic derivatives of ¢ (s), L(xp, s), and L¢(s) at s = 0. Using
the special values ¢ (0) = —1/2 and ¢(0) = — log(27)/2, we get

¢'(0)
£(0)

= log(27). (5.10)

Next, consider the decomposition

|D|

L(xp,s) = IDI™* Y xp(®)¢ (s, k/IDI), (5.11)
k=1

where

21
C(s,x):= Zm, x>0 Re(s)>1
n=0

is the Hurwitz zeta function. Lerch [11] proved that

(s, %) = % —x+log (;%) s+ O(s?). (5.12)

We then substitute (5.12) into (5.11), differentiate, and use (5.8) to get

L'(xp,0) _ wp & k
oo 0) —log(ID]) + D) kg)w(k) logT" (—) (5.13)

D]

Finally, we evaluate the logarithmic derivative of L¢(s) at s = 0. For convenience, write

Gp(s)
Li(s) = LAy

Page 11 of 16
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where

Page 12 of 16

Gp(s) = (1 — p~)A — xp(p)p~*) — pr & DI=2=1(1 — p1=5)(xp(p) — p' ™)

and Hy(s) :=1 — p'=%. Then

(s

Li(s) 4 Gy(s)  Hys)
f_a _ p  p
1 = & sl = % ( 60 A, (s)).

Now, we have

Gy(s) = (1 — p~) log(®)xpP)p~* + (1 = xp(p)p ) log(p)p ™
+ 2 0rd, () log(p)p® V2971 (1 — p' ) (xp(p) — p' )
— porA=2071 ( (p) — p' =) log(p)p'
= p YOI = Pl log(p)p! .

(5.14)

Hence
GO _ log(p) L~ xp(p) + 20rd, (F)p =1 (1 — p)(xp(p) — p) — P (xp(p) — p) — P4V (1 — p)
Gp(0) —p* D11 = p)(xp(p) — p)

Also, Hl’j(s) = 2log(p)p' 2 so that

=1 e
o) = losr)] —

From these calculations, we get

1 (G0 Hy)
log(p) Gp(o) Hp(o)

_1-xo)+2 ord, (NP1 (1 = p) (o) — p) — P>V (x0w) = p)

— (1~ p)

—po %=1 - p)(xp(p) — p)

_
1-p
1— xp(p) — PV (xp(p) — p) — ¥V (1 — p) + 2p° %) (x5 (p) — p)
= _—2o0rd
)+ —pP D11~ ) (o) — )
o0y (] —
= rondyy - 1P~ o)

PO D11 - p)pp) — p)

(5.15)
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Then substituting (5.15) into (5.14) yields

L.(0) (1 — pordM1 — )
A Z —log(p) | 2 ord,(f) + —3 (f)lil 1P
AR P = p)xo ) — p)
_pordp (MY (g
7<20rdp(f)+ WM)
— lOg p P 1-p)(xpp)—p)

plf

—2
— lOg Hpordp(f) Hp—e(p)
plf plf

=log [f2]]r?|. (5.16)
plf

where e(p) is defined by (5.1).
To complete the evaluation ofgbf(—l), we substitute (5.10), (5.13), and (5.16) into (5.9)

and use |Ay| =f%|D| to get

/ _ hOp) A\ Bk ke
o

k=1
1 h(Or)/2 |D| k \ x0kwph(Op)/4h(D) DHON2
—log | (—1— r(-) peon©p2|)
4 /| Arl ]!:[1 |D| lp_lf[

or equivalently,

[1p®"onr,

1 >h<0f>/2 D| ( X )XD(k)th(Of)/4h(D)
plf

- - 1_[1" -
4m /| Arl i1 DI

explgb, (—1)] = (

By (5.7), this completes the proof. O

6 Faltings heights of CM elliptic curves
In this section, we will prove the following result which is based on Silverman [16, Propo-

sition 1.1].

Proposition 6.1 Let E/L be an elliptic curve with complex multiplication by an order O¢
in an imaginary quadratic field K. Assume that the coefficients of the Weierstrass equation
for E/L are contained in Q(j(E)). Then

log(NL/(Ag/)

hFal(E/L) = 12[L : Q]

log(27) — Z log(F(zg-1))

[a]eCl(Oy)

1
h(Or)
where F(z) is defined by (3.2) and z -1 is a CM point as in (4.1).

Proof Given o € Hom(L, C), let z, € H be a complex number such that

E°(C) = C/(Z + Zzy). 6.1)
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Moreover, let
Alz) = (27)*n(2)**

be the discriminant function. Then Silverman [16, Proposition 1.1] proved that the Faltings
height of E/L is given by

log(N7/q(AE/L)) 1 Z

6
12[L:Q]  12[L:Q] log(Im(z,)°| A(z,)|)- (6.2)

hea(E/L) =
o€Hom(L,C)

Note that
1
I log(Im(z,)®|A(z)]) = log(27) + log(F (z5)),

hence (6.2) can be written as

log(Nz,Q(AE/L)) 1
hpg(E/L) = —————= —log(27) — log(F R 6.3
RI(E/L) = =R —logm) — e 3 o). (69)
oeHom(L,C)
Now, write
> log(Fz)= Y. > log(F(z)).
o€Hom(L,C) teHom(Q(j(E)),C) o0 eHom(L,C)
o logEy=T

Since E/L has coefficients in Q(j(E)), then for each fixed t € Hom(Q(j(E)), C) we can take
the same point z, € Hin theisomorphism (6.1) forallo € Hom(Z, C) such that o)) =
7. Therefore, if we let o, € Hom(L, C) denote any of the [L : Q(j(E))] embeddings which
extend t € Hom(Q(j(E)), C), then we have

> > logFz)= Y [L:QUE)log(F(zs,)).
teHom(Q((E)),C) o0 eHom(L,C) reHom(Q(j(E)),C)
o logeE)=t

By Shimura [15, Theorem 7.6], we have [Q((E)) : Q] = h(Of) and
(E)" : T € Hom(Q((E)), C)} = {j(a™") : [a] € CU(Op)}.

Then for each T € Hom(Q(j(E)), C), there is a unique [a] € Cl(Of) such that E°*(C) =
C/a~!. Recalling that a™! = Z + Zzy-1 (see (4.1)), we get

C/(Z + Zzs,) = C/(Z + Tz,-1),

hence the points z,, and z,-1 are SLy(Z)-equivalent (see e.g. [17, Proposition 1.4.4]). Since
F(z) is SLy(Z)-invariant, it follows that

o _L:Q]
> [L.Q(i(E))]log(F(za,))——h(of) 3 log(Fleg ).

teHom(Q(j(E)),C) [a]eCl(Oy)

Finally, the preceding calculations yield

1 1
: Y logFE) == Y. log(F(ze-1),
Q) iomwo Or) [aleCl(0))

which by (6.3) completes the proof. o
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7 Proofs of Theorem 1.1 and Theorem 1.3
In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1 By Proposition 6.1, we have
hra(E/L) = log [ Npjg(Ag )Y 2E @)™ [T Flegn) "0 |. (7.1)
[a]eCl(O))

Moreover, by Theorem 5.1 we have

1/h(Oy) 1 ~1/2 1Dl &\ —xp(K)wp/4h(D) o
F(zg1)~ ) — | — r <_> r |
[0]51;[((9 : 47 |Af| U |D| l_[
" k=t plf
(7.2)
Then by substituting (7.2) into (7.1) and simplifying, we obtain Theorem 1.1. m]

Proof of Theorem 1.3 Since E/L has complex multiplication, the j-invariant j(E) is an
algebraic integer. Hence by [18, Proposition VIL5.5], E/L has potential good reduction.
Accordingly, let L’ /L be a finite extension such that E/L’ has everywhere good reduction.
Now, by [18, Proposition III.1.4], there is a finite extension L”/L" with Q(j(E)) C L” and
an elliptic curve E/L” such that E/L” is given by a Weierstrass equation with coefficients
in Q(f(E)) and such that E/L’ is isomorphic to E/L”. By the semistable reduction theorem
[[18], Proposition VIL5.4 (b)], the curve E/L" also has everywhere good reduction. There-
fore we have Ag,;» = Op». Finally, since Ny»,g(Ag/r) = 1, then Theorem 1.3 follows by
applying Theorem 1.1 to E/L" and observing that

KEP(E/L) = hpa(E/L') = hpa(E/L").

O
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