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Abstract

In this paper, we evaluate the Faltings height of an elliptic curve with complex
multiplication by an order in an imaginary quadratic field in terms of Euler’s Gamma
function at rational arguments.

1 Background
In the Seminar Bourbaki article [5], Deligne used the Chowla–Selberg formula [2] to eval-
uate the stable Faltings height of an elliptic curve with complex multiplication by the ring
of integersOK of an imaginary quadratic field K in terms of Euler’s Gamma function �(s)
at rational arguments. He then used this result to calculate the minimum value attained
by the stable Faltings height. In this paper, we will establish a similar formula for both
the unstable and stable Faltings height of an elliptic curve with complex multiplication
by any order in K (not necessarily maximal). We illustrate these results by explicitly eval-
uating the Faltings height of an elliptic curve over Q with complex multiplication by a
non-maximal order (see Sect. 2).
We begin by recalling the definition of the (unstable) Faltings height of an elliptic curve,

following ([12], Chapter IV, Sect. 6). Let L be a number field with ring of integers OL.
Let E/L be an elliptic curve over L, and let E/OL be a Néron model for E/L. Let �E/OL

be the sheaf of Néron differentials, and let s∗�E/OL be the pullback by the zero section
s : Spec(OL) → E . Choose a differential ω ∈ H0(E/L,�E/L). Then the Faltings height of
E/L is defined by

hFal(E/L) := log(#(s∗�E/OL/OLω))
[L : Q]

− 1
2[L : Q]

∑

σ :L↪→C

log
(
i
2

∫

Eσ (C)
ωσ ∧ ωσ

)
.

The definition of the Faltings height given here is normalized as in Silverman [16] (who
in turn uses the same normalization as Faltings [6, p. 14]).
To state ourmain results, we fix the following notation. LetK be an imaginary quadratic

field of discriminantDwith ideal class groupCl(D), unit groupO×
K , andKronecker symbol

χD. Let h(D) = #Cl(D) be the class number andwD = #O×
K be the number of units. For an

elliptic curve E/L, let �E/L be the minimal discriminant ideal and j(E) be the j-invariant.
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Theorem 1.1 LetE/Lbeanelliptic curvewith complexmultiplicationbyanorderOf ⊂ K
of conductor f ∈ Z+ and discriminant �f = f 2D. Assume that the coefficients of the
Weierstrass equation for E/L are contained in Q(j(E)). Then the Faltings height of E/L is
given by

exp[hFal(E/L)] = NL/Q(�E/L)1/12[L:Q]
(√|�f |

π

)1/2

×
|D|∏

k=1
�

(
k

|D|
)−χD(k)wD/4h(D) ∏

p|f
pe(p)/2,

where

e(p) := (1 − pordp(f ))(1 − χD(p))
pordp(f )−1(1 − p)(χD(p) − p)

.

Remark 1.2 Our assumption that the coefficients of the Weierstrass equation for E/L be
contained inQ(j(E)) is used crucially in the proof of Proposition 6.1, which is an important
component in the proof of Theorem 1.1. This hypothesis can be removed if we instead
work with the stable Faltings height, which we do in Theorem 1.3.

If L′ is a finite extension of L, then it is not necessarily true that hFal(E/L) = hFal(E/L′).
However, if an elliptic curve over a number field has everywhere semistable reduction,
then the Faltings height is invariant under finite field extensions. This leads one to define
the stable Faltings height of E/L by

hstabFal (E/L) := hFal(E/L′),

where L′ is any finite extension of L such that E/L′ has everywhere semistable reduction.

Theorem 1.3 LetE/Lbeanelliptic curvewith complexmultiplicationbyanorderOf ⊂ K
of conductor f ∈ Z+ and discriminant �f = f 2D. Then the stable Faltings height of E/L is
given by

exp[hstabFal (E/L)] =
(√|�f |

π

)1/2 |D|∏

k=1
�

(
k

|D|
)−χD(k)wD/4h(D) ∏

p|f
pe(p)/2.

Remark 1.4 We now briefly explain how Theorem 1.3 can be used to recover Deligne’s
evaluation of the stable Faltings height in the case that E/L has complex multiplication by
the maximal orderOK in K . SinceOK has conductor f = 1, by Theorem 1.3 we have

exp[hstabFal (E/L)] =
(√|D|

π

)1/2 |D|∏

k=1
�

(
k

|D|
)−χD(k)wD/4h(D)

. (1.1)

Now, Deligne [5, p. 27] defined a different normalization of the stable Faltings height
which he called the geometric height of E and denoted by hgeom(E). It can be shown that

hgeom(E) = hstabFal (E/L) + 1
2
log π . (1.2)
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Deligne [5, p. 29] then observed that the Chowla–Selberg formula [2] can be used to
establish the identity

exp[hgeom(E)]−2 = 1√|D|
|D|∏

k=1
�

(
k

|D|
)χD(k)wD/2h(D)

. (1.3)

By substituting the evaluation of hstabFal (E/L) from (1.1) into (1.2), we recover Deligne’s
result (1.3).

An important component in the proof of Theorem 1.1 is a Chowla–Selberg formula for
any order in K . An arithmetic-geometric proof of such a formula was given by Nakkajima
and Taguchi [13] by employing a theorem of Faltings which relates the Faltings heights
of two isogenous abelian varieties. Kaneko briefly outlined an analytic approach to the
same formula in the research announcement [7]. Here we give a detailed analytic proof
of a Chowla–Selberg formula for orders in K . This proof is based on a renormalized
Kronecker limit formula for the non-holomorphic Eisenstein series on SL2(Z), a period
formula which relates the zeta function of an order inK to values of the Eisenstein series at
CMpoints corresponding to classes in the ideal class groupof the order, and a factorization
of the zeta function of an order given by Zagier [19], and in an equivalent but different
form by Kaneko [7].

2 Examples
In this section, we use Theorems 1.1 and 1.3, and SageMath [14] to evaluate the unstable
and stable Faltings height of an elliptic curve over Q with complex multiplication by a
non-maximal order.

Example 2.1 Let K = Q(
√−7) be the imaginary quadratic field of discriminant D = −7.

LetOK = Z

[
1+√−7

2

]
be the ring of integers, and let

O2 = Z + 2OK = Z[1 + √−7]

be the order of conductor f = 2 in K . Let A = 255 and consider the elliptic curve (see [8,
Eq. (2.2)])

EA/Q : y2 = x3 − 3A(A3 − 1728)x − 2(A3 − 1728)2.

The elliptic curve EA/Q has complex multiplication by the non-maximal order O2 and
the minimal discriminant ideal is

�EA/Q = (36 · 73 · 196)Z.
Moreover, the j-invariant of EA/Q is j = A3 = 2553.
We now use Theorems 1.1 and 1.3 to evaluate the unstable and stable Faltings height of

EA/Q.
Since the discriminant of K is D = −7 and the conductor of the order O2 is f = 2,

we have �2 = −28. Also, w−7 = 2 and h(−7) = 1. The Kronecker symbol values are
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χ−7(k) = 1 for k = 1, 2, 4 and χ−7(k) = −1 for k = 3, 5, 6. The only prime p|f is p = 2,
and we have

e(2) = (1 − 2)(1 − χ−7(2))
21−1(1 − 2)(χ−7(2) − 2)

= 0.

Then since the Weierstrass equation defining EA/Q has coefficients in Q(j) = Q, by
Theorem 1.1 the Faltings height of EA/Q is given by

exp[hFal(EA/Q)] = NQ/Q(�EA/Q)1/12
(
2
√
7

π

)1/2 7∏

k=1
�

(
k
7

)−χ−7(k)/2
.

After further simplification, we get

exp[hFal(EA/Q)] = 31/271/4191/2
(
2
√
7

π

)1/2 (
�(3/7)�(5/7)�(6/7)
�(1/7)�(2/7)�(4/7)

)1/2
.

Similarly, using the preceding computations, by Theorem 1.3 the stable Faltings height
of EA/Q is given by

exp[hstabFal (EA/Q)] =
(
2
√
7

π

)1/2 (
�(3/7)�(5/7)�(6/7)
�(1/7)�(2/7)�(4/7)

)1/2
.

Numerically, the values of the Faltings heights computed above are hFal(EA/Q) ≈
1.56896083514163 and hstabFal (EA/Q) ≈ −0.939042336039478.
Now, let L = Q(

√
7) and

u = 1197 − 456
√
7 ∈ L× � L×2.

Let EA/L denote the base change of EA/Q to L (given by the sameWeierstrass equation).
Then the quartic twist of EA/Q by u is the elliptic curve1

Eu
A/L(

√
u) : y2 = x3 − 3A(A3 − 1728)u2x − 2(A3 − 1728)2u3

over the quartic number field L(
√
u) = Q(

√
1197 − 456

√
7). Note that the quartic twist

Eu
A/L(

√
u) of EA/Q is precisely the quadratic twist by u = 1197 − 456

√
7 of the base

change EA/L.
The minimal discriminant ideal of Eu

A/L(
√
u) is

�Eu
A/L(

√
u) = OL(

√
u),

hence the quartic twistEu
A/L(

√
u) has everywhere good reduction. It follows that the stable

Faltings height of EA/Q is given by

hstabFal (EA/Q) = hFal(Eu
A/L(

√
u)).

However, since the coefficients of theWeierstrass equation ofEu
A/L(

√
u) arenot contained

in Q(j) = Q, we cannot apply Theorem 1.1 directly to evaluate the Faltings height of
Eu
A/L(

√
u). This demonstrates the usefulness of Theorem 1.3 in evaluating the stable

Faltings height of a CM elliptic curve.

1The elliptic curve EA and its quartic twist Eu
A are taken from the third entry in [8, Table 3, p. 556].
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3 The Kronecker limit formula
In this section, we briefly recall a renormalized version of the Kronecker (first) limit
formula. Let H denote the complex upper half-plane and define the group

�∞ :=
{

±
(
1 n
0 1

)
: n ∈ Z

}
< SL2(Z).

Then the non-holomorphic Eisenstein series on SL2(Z) is defined by

E(z, s) :=
∑

M∈�∞\SL2(Z)
Im(Mz)s, z = x + iy ∈ H, Re(s) > 1.

The Eisenstein series has the well-known Fourier expansion (see e.g. [9, Theorem 9.9
(2), p. 32])

E(z, s) = ys + √
π

�(s − 1
2 )

�(s)
ζ (2s − 1)

ζ (2s)
y1−s

+ 4π s

�(s)ζ (2s)
√y

∞∑

n=1
σ1−2s(n)ns−

1
2Ks− 1

2
(2πny) cos(2πnx),

where�(s) is Euler’s Gamma function, ζ (s) is the Riemann zeta function, σk (n) :=
∑

�|n �k

is the k-divisor function, andKν is theK -Bessel function of order ν. The Fourier expansion
shows that E(z, s) extends to a meromorphic function on C with a simple pole at s = 1.
Let s �→ (s+ 1)/2 in the Fourier expansion of E(z, s) and calculate the Taylor expansion

of the shifted Eisenstein series E(z, (s + 1)/2) at s = −1 to get

E (z, (s + 1)/2) = 1 +
(
log(√y) − π

6
y − 2

∞∑

n=1

σ1(n)
n

e−2πny cos(2πnx)
)
(s + 1)

+ O((s + 1)2).

Now, recall that the Dedekind eta function is the weight 1/2 modular form for SL2(Z)
defined by the infinite product

η(z) := q1/24
∞∏

n=1
(1 − qn), q := e2π iz , z ∈ H.

Then using the identity (see e.g. [10, p. 274])

log(√y|η(z)|2) = log(√y) − π

6
y − 2

∞∑

n=1

σ1(n)
n

e−2πny cos(2πnx),

one gets the following renormalized version of the Kronecker limit formula,

E (z, (s + 1)/2) = 1 + log(F (z))(s + 1) + O((s + 1)2), (3.1)

where F (z) is the SL2(Z)-invariant function defined by

F (z) :=
√
Im(z)|η(z)|2. (3.2)
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4 Zeta functions of orders and CM values of Eisenstein series
In this section, we relate the zeta function of an order in an imaginary quadratic field to
values of the Eisenstein series E(z, s) at CM points corresponding to classes in the ideal
class group of the order.
We begin by recalling some facts regarding orders in imaginary quadratic fields (see e.g.

Cox [3, Sect. 7]). Let K be an imaginary quadratic field of discriminant D. Given f ∈ Z+,
let Of be the (unique) order of conductor f in K . A fractional Of -ideal a is a subset of K
which is a non-zero finitely generatedOf -module. A fractionalOf -ideal a is proper if

Of = {β ∈ K : βa ⊂ a}.

It is known that a fractionalOf -ideal is invertible if and only if it is proper (see [3, Proposi-
tion 7.4]). Accordingly, let I(Of ) be the group of proper fractionalOf -ideals, and let P(Of )
be the subgroup of I(Of ) consisting of principal fractionalOf -ideals. The ideal class group
ofOf is defined as the quotient group

Cl(Of ) := I(Of )/P(Of ).

Let h(Of ) = #Cl(Of ) be the class number ofOf .
The Dedekind zeta function ofOf is defined by

ζOf (s) :=
∑

a∈I(Of )
a⊂Of

1
N (a)s

, Re(s) > 1.

Similarly, given an ideal class A ∈ Cl(Of ), we define the ideal class zeta function by

ζA(s) :=
∑

I∈A
I⊂Of

1
N (I)s

, Re(s) > 1.

Then we have the decomposition

ζOf (s) =
∑

A∈Cl(Of )
ζA(s).

Now, the discriminant ofOf is given by�f = f 2D. By [3, Theorem 7.7], we may choose
a proper integral ideal a ∈ A with

a = Za + Z

(−b + √
�f

2

)

where [a, b, c](X, Y ) = aX2+bXY +cY 2 is a quadratic formof discriminant b2−4ac = �f
with (a, b, c) = 1 and a = N (a) > 0.
For α ∈ K , let α′ denote the image of α under the nontrivial automorphism of K . Then

a′ = Za + Z

(
b + √

�f

2

)
.
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Moreover, by [3, Eq. (7.6)] we have a−1 = 1
aa

′, and thus

a−1 = Z + Z

(
b + √

�f

2a

)
= Z + Zza−1 (4.1)

where

za−1 := b + √
�f

2a
∈ H

is the root in the complex upper half-plane of the dehomogenized form [a,−b, c](X, 1) =
aX2 − bX + c.
LetO×

f be the group of units inOf , and let wf = #O×
f .

Proposition 4.1 With notation as above, we have

ζ[a](s) = 2
wf

(√|�f |
2

)−s

ζ (2s)E(za−1 , s).

We will need the following lemma.

Lemma 4.2 Let a be a proper fractionalOf -ideal. Then the map

φ : (a−1 \ {0})/O×
f −→ {

I ∈ [a] : I ⊂ Of
}

defined by φ([α]) = αa is a bijection.

Proof Wefirst prove that themapφ is well-defined.Observe that ifα ∈ a−1, thenαa ⊆ Of
since a−1a = Of . Next, observe that if [α] = [β], then α = βu for some unit u ∈ O×

f . It
follows that αOf = βuOf = βOf , and hence αa = βa.
To prove that φ is injective, suppose that αa = βa. Then αaa−1 = βaa−1, which implies

that αOf = βOf , or equivalently, that [α] = [β].
To prove that φ is surjective, suppose that I ∈ [a] with I ⊂ Of . Then I = αa for some

α ∈ K×, or equivalently, Ia−1 = αOf . Since I is integral, we have Ia−1 ⊂ a−1, so that
α ∈ a−1. Then [α] ∈ (a−1 \ {0})/O×

f with φ([α]) = αa = I . 
�

We now prove Proposition 4.1.

Proof of Proposition 4.1 Using Lemmas (4.2) and (4.1), we get

ζ[a](s) =
∑

I∈[a]
I⊂Of

1
N (I)s

=
∑

0 �=α∈a−1/O×
f

1
N (αa)s

= 1
N (a)s

∑

0 �=α∈a−1/O×
f

1
N (α)s

= 1
as

∑

0 �=α∈a−1/O×
f

1
|α|2s

= 1
wf as

∑

(0,0) �=(m,n)∈Z2

1
|m + nza−1 |2s
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= 1
wf

(√|�f |
2

)−s (√|�f |
2a

)s ∑

(0,0) �=(m,n)∈Z2

1
|m + nza−1 |2s

= 1
wf

(√|�f |
2

)−s ∑

(0,0) �=(m,n)∈Z2

Im(za−1 )s

|m + nza−1 |2s .

= 2
wf

(√|�f |
2

)−s

ζ (2s)E(za−1 , s),

where for the last equality we used the following well-known identity (see e.g. [4, Propo-
sition 2.7.6 (a), p. 55])

ζ (2s)E(z, s) = 1
2

∑

(0,0) �=(m,n)∈Z2

Im(z)s

|m + nz|2s .


�

5 A Chowla–Selberg formula for imaginary quadratic orders
In this section, we will prove the following result.

Theorem 5.1 With notation as in Sect. 4, we have

∏

[a]∈Cl(Of )
F (za−1 ) =

(
1

4π
√|�f |

)h(Of )/2 |D|∏

k=1
�

(
k

|D|
)χD(k)wDh(Of )/4h(D)

×
∏

p|f
p−e(p)h(Of )/2,

where F (z) is defined by (3.2), za−1 is a CM point as in (4.1), and

e(p) := (1 − pordp(f ))(1 − χD(p))
pordp(f )−1(1 − p)(χD(p) − p)

. (5.1)

Before proving Theorem 5.1, we illustrate how it can be used to evaluate the Dedekind
eta function η(z) at CM points.

Example 5.2 Let K = Q(i), and consider the order of conductor f = 2 in K given by

O2 = Z + 2Z[i] = Z + Z2i.

Since the discriminant of K is D = −4, the discriminant of O2 is �2 = 22(−4) = −16.
Also, h(−4) = 1 and w−4 = 4. We have h(O2) = 1, so that Cl(O2) = {[O2]}. Then since
O−1

2 = O2 = Z + Z2i, from (4.1) we can take zO−1
2

= 2i for the CM point. It follows that

∏

[a]∈Cl(O2)
F (za−1 ) = F (zO−1

2
) = F (2i) =

√
Im(2i)|η(2i)|2 = √

2|η(2i)|2.
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On the other hand, we have

(
1

4π
√|�2|

)h(O2)/2 4∏

k=1
�

(
k
4

)χ−4(k)w−4h(O2)/4h(−4) ∏

p|2
p−e(p)h(O2)/2

= 1
4
√

π

4∏

k=1
�

(
k
4

)χ−4(k)
2−e(2)/2.

Therefore, by Theorem 5.1 we get

√
2|η(2i)|2 = 1

4
√

π

4∏

k=1
�

(
k
4

)χ−4(k)
2−e(2)/2. (5.2)

Now, the values of the Kronecker symbol are χ−4(1) = 1,χ−4(2) = 0,χ−4(3) = −1, and
χ−4(4) = 0. The only prime p|f is p = 2, and we have

e(2) = (1 − 2)(1 − χ−4(2))
21−1(1 − 2)(χ−4(2) − 2)

= −1
2
.

Then after expanding the product in (5.2), we get

√
2|η(2i)|2 = 1

27/4π1/2
�(1/4)
�(3/4)

. (5.3)

Using the reflection formula

�(z)�(1 − z) = π

sin(πz)

with z = 1/4 yields

�(3/4) = 2π√
2

1
�(1/4)

.

Then substituting in (5.3) gives

|η(2i)|2 = 1
211/4π3/2�(1/4)2.

Finally, since η(2i) is a positive real number, we get

η(2i) = 1
211/8π3/4 �(1/4). (5.4)

We used SageMath [14] to compute that both sides of (5.4) are ≈0.592382781332416,
which serves as a numerical verification of Theorem 5.1.

Proof of Theorem 5.1 By Proposition 4.1, we have

ζ[a] ((s + 1)/2) = 2
wf

(√|�f |
2

)−(s+1)/2

ζ (s + 1)E (za−1 , (s + 1)/2) .
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Then summing over all ideal classes in Cl(Of ) yields

ζOf ((s + 1)/2) = 2
wf

(√|�f |
2

)−(s+1)/2

ζ (s + 1)
∑

[a]∈Cl(Of )
E (za−1 , (s + 1)/2) . (5.5)

For convenience, define the function

gOf (s) :=
wf

2

(√|�f |
2

)(s+1)/2
ζOf ((s + 1)/2)

ζ (s + 1)
.

Then (5.5) can be written as

gOf (s) =
∑

[a]∈Cl(Of )
E (za−1 , (s + 1)/2) . (5.6)

Now, using the Kronecker limit formula (3.1), we compare Taylor expansions at s = −1
on both sides of (5.6) to get

g ′
Of

(−1) =
∑

[a]∈Cl(Of )
log(F (za−1 )),

or equivalently,
∏

[a]∈Cl(Of )
F (za−1 ) = exp[g ′

Of
(−1)]. (5.7)

Therefore, we must evaluate g ′
Of

(−1).
Our starting point is the factorization (see e.g. [1, Proposition 10.18 (2)])

ζOf (s) = ζ (s)Lf (s)L(χD, s),

where

Lf (s) :=
∏

p|f

(1 − p−s)(1 − χD(p)p−s) − pordp(f )(1−2s)−1(1 − p1−s)(χD(p) − p1−s)
1 − p1−2s .

We use this factorization to write

gOf (s) = wf

2

(√|�f |
2

)(s+1)/2
ζ ((s + 1)/2)

ζ (s + 1)
Lf ((s + 1)/2)L (χD, (s + 1)/2) .

Now, a calculation with the product rule yields

g ′
Of

(−1) = wf

4
Lf (0)L(χD, 0)

(
log

(√|�f |
2

)
− ζ ′(0)

ζ (0)
+ L′(χD, 0)

L(χD, 0)
+

L′
f (0)

Lf (0)

)
.

To further simplify this identity, we note that

Lf (0) = f
∏

p|f

(
1 − χD(p)

p

)
.
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Then using Dirichlet’s class number formula

L(χD, 0) = 2h(D)
wD

, (5.8)

the identity (see e.g. [3, Theorem 7.24])

h(Of ) = h(D)f
[O×

K : O×
f ]

∏

p|f

(
1 − χD(p)

p

)
,

and [O×
K : O×

f ] = wD/wf , we get

wf

4
Lf (0)L(χD, 0) = h(Of )

2
.

It follows that

g ′
Of

(−1) = h(Of )
2

(
log

(√|�f |
2

)
− ζ ′(0)

ζ (0)
+ L′(χD, 0)

L(χD, 0)
+

L′
f (0)

Lf (0)

)
. (5.9)

We now evaluate the logarithmic derivatives of ζ (s), L(χD, s), and Lf (s) at s = 0. Using
the special values ζ (0) = −1/2 and ζ ′(0) = − log(2π )/2, we get

ζ ′(0)
ζ (0)

= log(2π ). (5.10)

Next, consider the decomposition

L(χD, s) = |D|−s
|D|∑

k=1
χD(k)ζ (s, k/|D|), (5.11)

where

ζ (s, x) :=
∞∑

n=0

1
(n + x)s

, x > 0, Re(s) > 1

is the Hurwitz zeta function. Lerch [11] proved that

ζ (s, x) = 1
2

− x + log
(

�(x)√
2π

)
s + O(s2). (5.12)

We then substitute (5.12) into (5.11), differentiate, and use (5.8) to get

L′(χD, 0)
L(χD, 0)

= − log(|D|) + wD
2h(D)

|D|∑

k=1
χD(k) log �

(
k

|D|
)
. (5.13)

Finally, we evaluate the logarithmic derivative of Lf (s) at s = 0. For convenience, write

Lf (s) =
∏

p|f

Gp(s)
Hp(s)

,
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where

Gp(s) := (1 − p−s)(1 − χD(p)p−s) − pordp(f )(1−2s)−1(1 − p1−s)(χD(p) − p1−s)

and Hp(s) := 1 − p1−2s. Then

L′
f (s)

Lf (s)
= d

ds
log(Lf (s)) =

∑

p|f

(
G′
p(s)

Gp(s)
− H ′

p(s)
Hp(s)

)
. (5.14)

Now, we have

G′
p(s) = (1 − p−s) log(p)χD(p)p−s + (1 − χD(p)p−s) log(p)p−s

+ 2 ordp(f ) log(p)pordp(f )(1−2s)−1(1 − p1−s)(χD(p) − p1−s)

− pordp(f )(1−2s)−1(χD(p) − p1−s) log(p)p1−s

− pordp(f )(1−2s)−1(1 − p1−s) log(p)p1−s.

Hence

G′
p(0)

Gp(0)
= log(p)

1 − χD(p) + 2 ordp(f )pordp(f )−1(1 − p)(χD(p) − p) − pordp(f )(χD(p) − p) − pordp(f )(1 − p)
−pordp(f )−1(1 − p)(χD(p) − p)

.

Also, H ′
p(s) = 2 log(p)p1−2s so that

H ′
p(0)

Hp(0)
= log(p)

2p
1 − p

.

From these calculations, we get

1
log(p)

(
G′
p(0)

Gp(0)
− H ′

p(0)
Hp(0)

)

= 1 − χD(p) + 2 ordp(f )pordp(f )−1(1 − p)(χD(p) − p) − pordp(f )(χD(p) − p) − pordp(f )(1 − p)
−pordp(f )−1(1 − p)(χD(p) − p)

− 2p
1 − p

= −2 ordp(f ) + 1 − χD(p) − pordp(f )(χD(p) − p) − pordp(f )(1 − p) + 2pordp(f )(χD(p) − p)
−pordp(f )−1(1 − p)(χD(p) − p)

= −2 ordp(f ) − (1 − pordp(f ))(1 − χD(p))
pordp(f )−1(1 − p)(χD(p) − p)

. (5.15)
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Then substituting (5.15) into (5.14) yields

L′
f (0)

Lf (0)
=

∑

p|f
− log(p)

(
2 ordp(f ) + (1 − pordp(f ))(1 − χD(p))

pordp(f )−1(1 − p)(χD(p) − p)

)

= log

⎛

⎜⎝
∏

p|f
p

−
(
2 ordp(f )+

(
1−pordp(f )

)
(1−χD (p))

pordp(f )−1(1−p)(χD (p)−p)

)⎞

⎟⎠

= log

⎛

⎜⎝

⎛

⎝
∏

p|f
pordp(f )

⎞

⎠
−2

∏

p|f
p−e(p)

⎞

⎟⎠

= log

⎛

⎝f −2
∏

p|f
p−e(p)

⎞

⎠ , (5.16)

where e(p) is defined by (5.1).
To complete the evaluation of g ′

Of
(−1), we substitute (5.10), (5.13), and (5.16) into (5.9)

and use |�f | = f 2|D| to get

g ′
Of

(−1) = h(Of )
2

log

⎛

⎝
( √|�f |
4π f 2|D|

) |D|∏

k=1
�

(
k

|D|
)χD(k)wD/2h(D) ∏

p|f
p−e(p)

⎞

⎠

= log

⎛

⎝
(

1
4π

√|�f |

)h(Of )/2 |D|∏

k=1
�

(
k

|D|
)χD(k)wDh(Of )/4h(D) ∏

p|f
p−e(p)h(Of )/2

⎞

⎠,

or equivalently,

exp[g ′
Of

(−1)] =
(

1
4π

√|�f |

)h(Of )/2 |D|∏

k=1
�

(
k

|D|
)χD(k)wDh(Of )/4h(D) ∏

p|f
p−e(p)h(Of )/2.

By (5.7), this completes the proof. 
�

6 Faltings heights of CM elliptic curves
In this section, we will prove the following result which is based on Silverman [16, Propo-
sition 1.1].

Proposition 6.1 Let E/L be an elliptic curve with complex multiplication by an orderOf
in an imaginary quadratic field K . Assume that the coefficients of theWeierstrass equation
for E/L are contained in Q(j(E)). Then

hFal(E/L) = log(NL/Q(�E/L))
12[L : Q]

− log(2π ) − 1
h(Of )

∑

[a]∈Cl(Of )
log(F (za−1 )),

where F (z) is defined by (3.2) and za−1 is a CM point as in (4.1).

Proof Given σ ∈ Hom(L,C), let zσ ∈ H be a complex number such that

Eσ (C) ∼= C/(Z + Zzσ ). (6.1)
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Moreover, let

�(z) := (2π )12η(z)24

be thediscriminant function.ThenSilverman [16, Proposition1.1] proved that theFaltings
height of E/L is given by

hFal(E/L) = log(NL/Q(�E/L))
12[L : Q]

− 1
12[L : Q]

∑

σ∈Hom(L,C)
log(Im(zσ )6|�(zσ )|). (6.2)

Note that
1
12

log(Im(zσ )6|�(zσ )|) = log(2π ) + log(F (zσ )),

hence (6.2) can be written as

hFal(E/L) = log(NL/Q(�E/L))
12[L : Q]

− log(2π ) − 1
[L : Q]

∑

σ∈Hom(L,C)
log(F (zσ )). (6.3)

Now, write
∑

σ∈Hom(L,C)
log(F (zσ )) =

∑

τ∈Hom(Q(j(E)),C)

∑

σ∈Hom(L,C)
σ |Q(j(E))=τ

log(F (zσ )).

Since E/L has coefficients in Q(j(E)), then for each fixed τ ∈ Hom(Q(j(E)),C) we can take
the samepoint zσ ∈ H in the isomorphism (6.1) for all σ ∈ Hom(L,C) such that σ |Q(j(E)) =
τ . Therefore, if we let στ ∈ Hom(L,C) denote any of the [L : Q(j(E))] embeddings which
extend τ ∈ Hom(Q(j(E)),C), then we have

∑

τ∈Hom(Q(j(E)),C)

∑

σ∈Hom(L,C)
σ |Q(j(E))=τ

log(F (zσ )) =
∑

τ∈Hom(Q(j(E)),C)
[L : Q(j(E))] log(F (zστ )).

By Shimura [15, Theorem 7.6], we have [Q(j(E)) : Q] = h(Of ) and

{j(E)τ : τ ∈ Hom(Q(j(E)),C)} = {j(a−1) : [a] ∈ Cl(Of )}.

Then for each τ ∈ Hom(Q(j(E)),C), there is a unique [a] ∈ Cl(Of ) such that Eστ (C) ∼=
C/a−1. Recalling that a−1 = Z + Zza−1 (see (4.1)), we get

C/(Z + Zzστ ) ∼= C/(Z + Zza−1 ),

hence the points zστ and za−1 are SL2(Z)-equivalent (see e.g. [17, Proposition I.4.4]). Since
F (z) is SL2(Z)-invariant, it follows that

∑

τ∈Hom(Q(j(E)),C)
[L : Q(j(E))] log(F (zστ )) = [L : Q]

h(Of )
∑

[a]∈Cl(Of )
log(F (za−1 )).

Finally, the preceding calculations yield

1
[L : Q]

∑

σ∈Hom(L,C)
log(F (zσ )) = 1

h(Of )
∑

[a]∈Cl(Of )
log(F (za−1 )),

which by (6.3) completes the proof. 
�
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7 Proofs of Theorem 1.1 and Theorem 1.3
In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1 By Proposition 6.1, we have

hFal(E/L) = log

⎛

⎝NL/Q(�E/L)1/12[L:Q](2π )−1
∏

[a]∈Cl(Of )
F (za−1 )−1/h(Of )

⎞

⎠ . (7.1)

Moreover, by Theorem 5.1 we have

∏

[a]∈Cl(Of )
F (za−1 )−1/h(Of ) =

(
1

4π
√|�f |

)−1/2 |D|∏

k=1
�

(
k

|D|
)−χD(k)wD/4h(D) ∏

p|f
pe(p)/2.

(7.2)

Then by substituting (7.2) into (7.1) and simplifying, we obtain Theorem 1.1. 
�
Proof of Theorem 1.3 Since E/L has complex multiplication, the j-invariant j(E) is an
algebraic integer. Hence by [18, Proposition VII.5.5], E/L has potential good reduction.
Accordingly, let L′/L be a finite extension such that E/L′ has everywhere good reduction.
Now, by [18, Proposition III.1.4], there is a finite extension L′′/L′ with Q(j(E)) ⊂ L′′ and
an elliptic curve E/L′′ such that E/L′′ is given by a Weierstrass equation with coefficients
in Q(j(E)) and such that E/L′ is isomorphic to E/L′′. By the semistable reduction theorem
[[18], Proposition VII.5.4 (b)], the curve E/L′′ also has everywhere good reduction. There-
fore we have �E/L′′ = OL′′ . Finally, since NL′′/Q(�E/L′′ ) = 1, then Theorem 1.3 follows by
applying Theorem 1.1 to E/L′′ and observing that

hstabFal (E/L) = hFal(E/L′) = hFal(E/L′′).
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